APPLICATIONS OF P-ADIC GENERALIZED FUNCTIONS AND APPROXIMATIONS BY A SYSTEM OF P-ADIC TRANSLATIONS OF A FUNCTION

被引:3
作者
Volosivets, S. S. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Saratov, Russia
关键词
P-adic generalized function; L(loc)(p)(R(+)); multiplicative Fourier transform; Lebesgue points of order p; Wiener tauberian theorem; Wiener theorem on denseness of translations; WIENERS TAUBERIAN THEOREM; DISTRIBUTIONS;
D O I
10.1007/s11202-009-0001-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under some conditions we prove that the convergence of a sequence of functions in the space of P-adic generalized functions is equivalent to its convergence in the space of locally integrable functions. Some analogs are established of the Wiener tauberian theorem and the Wiener theorem on denseness of translations for P-adic convolutions and translations.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 17 条
[1]  
[Anonymous], 1951, Theorie des Distributions
[2]  
[Anonymous], 1988, FOURIER INTEGRAL CER
[3]  
[Anonymous], 1972, FUNCTIONAL ANAL
[4]  
BELTRAMI EJ, 1965, J MATH MECH, V14, P99
[5]   On approximation by convolutions and bases of shifts of a function [J].
Golubov, B. I. .
ANALYSIS MATHEMATICA, 2008, 34 (01) :9-28
[6]   Dyadic distributions [J].
Golubov, B. I. .
SBORNIK MATHEMATICS, 2007, 198 (1-2) :207-230
[7]  
Golubov B. I., 1987, Walsh Series and Transforms. Theory and Applications
[8]   A dyadic analogue of Wiener's Tauberian theorem and some related questions [J].
Golubov, BI .
IZVESTIYA MATHEMATICS, 2003, 67 (01) :29-53
[9]  
Kaczmarz S., 1958, THEORY ORTHOGONAL SE
[10]   DISTRIBUTION PROOF OF WIENERS TAUBERIAN THEOREM [J].
KOREVAAR, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (03) :353-&