Frobenius map on local Calabi-Yau manifolds

被引:0
作者
Shapiro, I. [1 ]
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
关键词
geometry; polynomials; INSTANTON NUMBERS;
D O I
10.1063/1.3075574
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove results that, for a certain class of noncompact Calabi-Yau threefolds, relate the Frobenius action on their p-adic cohomology to the Frobenius action on the p-adic cohomology of the corresponding curves. In the Appendix, we describe our interpretation of the Griffiths-Dwork method.
引用
收藏
页数:14
相关论文
共 14 条
  • [1] BALDASSARRI F, 2004, GEOMETRIC ASPECTS DW, V2, P245
  • [2] BALDASSARRI F, 2004, GEOMETRIC ASPECTS DW, V1, P245
  • [3] GRIFFITHS PA, 1969, ANN MATH, V90, P460, DOI 10.2307/1970746
  • [4] Katz N., 1968, PUBL MATH-PARIS, V35, P71
  • [5] Katz S., 1999, MATH SURVEYS MONOGRA, V68
  • [6] KONTSEVICH M, ARXIVHEPTH0603106
  • [7] Integrality of instanton numbers and p-adic B-model
    Kontsevich, Maxim
    Schwarz, Albert
    Vologodsky, Vadim
    [J]. PHYSICS LETTERS B, 2006, 637 (1-2) : 97 - 101
  • [8] SCHWARZ A, ARXIVHEPTH0606151
  • [9] Schwarz A., ARXIV08071714
  • [10] SCHWARZ A, ARXIV08090086