Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data

被引:30
作者
Reisetter, Anna C. [1 ]
Muehlbauer, Michael J. [2 ,3 ]
Bain, James R. [2 ,3 ]
Nodzenski, Michael [1 ]
Stevens, Robert D. [2 ,3 ]
Ilkayeva, Olga [2 ,3 ]
Metzger, Boyd E. [4 ]
Newgard, Christopher B. [2 ,3 ]
Lowe, William L., Jr. [4 ]
Scholtens, Denise M. [1 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Div Biostat, Dept Prevent Med, Chicago, IL 60611 USA
[2] Duke Univ, Med Ctr, Sarah W Stedman Nutr & Metab Ctr, Durham, NC 27701 USA
[3] Duke Univ, Sch Med, Durham, NC 27701 USA
[4] Northwestern Univ, Feinberg Sch Med, Div Endocrinol, Dept Med, Chicago, IL 60611 USA
关键词
Metabolomics; Non-targeted; Gas chromatography/mass spectrometry; GC/MS; Normalization; Batch effects; MASS-SPECTROMETRY; LARGE-SCALE; WEIGHT-LOSS; PREGNANCY; SAMPLES; PLASMA; SERUM; BIOINFORMATICS; BIOCONDUCTOR; METABOLITES;
D O I
10.1186/s12859-017-1501-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Metabolomics offers a unique integrative perspective for health research, reflecting genetic and environmental contributions to disease-related phenotypes. Identifying robust associations in population-based or large-scale clinical studies demands large numbers of subjects and therefore sample batching for gas-chromatography/ mass spectrometry (GC/MS) non-targeted assays. When run over weeks or months, technical noise due to batch and run-order threatens data interpretability. Application of existing normalization methods to metabolomics is challenged by unsatisfied modeling assumptions and, notably, failure to address batch-specific truncation of low abundance compounds. Results: To curtail technical noise and make GC/MS metabolomics data amenable to analyses describing biologically relevant variability, we propose mixture model normalization (mixnorm) that accommodates truncated data and estimates per-metabolite batch and run-order effects using quality control samples. Mixnorm outperforms other approaches across many metrics, including improved correlation of non-targeted and targeted measurements and superior performance when metabolite detectability varies according to batch. For some metrics, particularly when truncation is less frequent for a metabolite, mean centering and median scaling demonstrate comparable performance to mixnorm. Conclusions: When quality control samples are systematically included in batches, mixnorm is uniquely suited to normalizing non-targeted GC/MS metabolomics data due to explicit accommodation of batch effects, run order and varying thresholds of detectability. Especially in large-scale studies, normalization is crucial for drawing accurate conclusions from non-targeted GC/MS metabolomics data.
引用
收藏
页数:17
相关论文
共 42 条
[21]   Optimizing the Use of Quality Control Samples for Signal Drift Correction in Large-Scale Urine Metabolic Profiling Studies [J].
Kamleh, Muhammad Anas ;
Ebbels, Timothy M. D. ;
Spagou, Konstantina ;
Masson, Perrine ;
Want, Elizabeth J. .
ANALYTICAL CHEMISTRY, 2012, 84 (06) :2670-2677
[22]   Metabolomics Data Normalization with EigenMS [J].
Karpievitch, Yuliya V. ;
Nikolic, Sonja B. ;
Wilson, Richard ;
Sharman, James E. ;
Edwards, Lindsay M. .
PLOS ONE, 2014, 9 (12)
[23]   MeltDB 2.0-advances of the metabolomics software system [J].
Kessler, Nikolas ;
Neuweger, Heiko ;
Bonte, Anja ;
Langenkaemper, Georg ;
Niehaus, Karsten ;
Nattkemper, Tim W. ;
Goesmann, Alexander .
BIOINFORMATICS, 2013, 29 (19) :2452-2459
[24]   FiehnLib: Mass Spectral and Retention Index Libraries for Metabolomics Based on Quadrupole and Time-of-Flight Gas Chromatography/Mass Spectrometry [J].
Kind, Tobias ;
Wohlgemuth, Gert ;
Lee, Do Yup ;
Lu, Yun ;
Palazoglu, Mine ;
Shahbaz, Sevini ;
Fiehn, Oliver .
ANALYTICAL CHEMISTRY, 2009, 81 (24) :10038-10048
[25]   Capturing heterogeneity in gene expression studies by surrogate variable analysis [J].
Leek, Jeffrey T. ;
Storey, John D. .
PLOS GENETICS, 2007, 3 (09) :1724-1735
[26]  
Leek JT., 2016, SVA SURROGATE VARIAB
[27]   The STEDMAN Project: Biophysical, Biochemical and Metabolic Effects of a Behavioral Weight Loss Intervention during Weight Loss, Maintenance, and Regain [J].
Lien, Lillian F. ;
Haqq, Andrea M. ;
Arlotto, Michelle ;
Slentz, Cris A. ;
Muehlbauer, Michael J. ;
McMahon, Ross L. ;
Rochon, James ;
Gallup, Dianne ;
Bain, James R. ;
Ilkayeva, Olga ;
Wenner, Brett R. ;
Stevens, Robert D. ;
Millington, David S. ;
Muoio, Deborah M. ;
Butler, Mark D. ;
Newgard, Christopher B. ;
Svetkey, Laura P. .
OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2009, 13 (01) :21-35
[28]   Influence of the collection tube on metabolomic changes in serum and plasma [J].
Lopez-Bascon, M. A. ;
Priego-Capote, F. ;
Peralbo-Molina, A. ;
Calderon-Santiago, M. ;
Luque de Castro, M. D. .
TALANTA, 2016, 150 :681-689
[29]   Metabolomic Quality Assessment of EDTA Plasma and Serum Samples [J].
Malm, Linus ;
Tybring, Gunnel ;
Moritz, Thomas ;
Landin, Britta ;
Galli, Joakim .
BIOPRESERVATION AND BIOBANKING, 2016, 14 (05) :416-423
[30]  
Metzger BE, 2008, NEW ENGL J MED, V358, P1991, DOI 10.1056/NEJMoa0707943