A new generalized Drucker-Prager flow rule for concrete under compression

被引:26
作者
Bao, J. Q. [1 ]
Long, X. [1 ]
Tan, K. H. [1 ]
Lee, C. K. [1 ]
机构
[1] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore
关键词
Concrete plasticity model; Flow rule; Plastic volumetric strain; Generalized Drucker-Prager model; Concrete brittleness index; CONSTITUTIVE MODEL; FAILURE CRITERION; PLASTICITY THEORY; DAMAGE MODEL; FORMULATION; BEHAVIOR; INELASTICITY; CONFINEMENT;
D O I
10.1016/j.engstruct.2013.08.025
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, a new generalized Drucker-Prager flow rule for concrete under compression with infinitesimal deformation is proposed, where the plastic volumetric strain is taken as the hardening parameter. The flow rule is proposed based on two fundamental phenomenological deformation properties of concrete, and on the fact that the deviatoric part of the plastic strain has no contribution to plastic volumetric strain. There is only one material parameter needing calibration for each grade of concrete in the flow rule. This parameter has a clear physical meaning to reflect the brittleness of concrete, and is defined as the brittleness index of concrete. The flow rule has a concise and simple form similar to the traditional Drucker-Prager flow rule, and for the case of uniaxial compression, the proposed flow rule is identical to the traditional Drucker-Prager flow rule. The effect of confinement stress is well considered by multiplying the hydrostatic part of the flow rule with a simple piecewise function, which differentiates the proposed flow rule from the traditional Drucker-Prager flow rule. An iterative method is proposed to determine the incremental stress-strain relationship when determining the flow rule. The correctness and reliability of the suggested flow rule are is validated using uniaxial, biaxial, and triaxial experimental results. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2076 / 2082
页数:7
相关论文
共 51 条
[1]  
[Anonymous], J ENG MECH-ASCE
[2]  
[Anonymous], 1993, THESIS DELFT U TECHN
[3]  
Babu R., 2005, ASIAN J CIV ENG, V6, P211
[4]   ENDOCHRONIC INELASTICITY AND INCREMENTAL PLASTICITY [J].
BAZANT, ZP .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1978, 14 (09) :691-714
[5]  
Bazant ZP, 2000, J ENG MECH-ASCE, V126, P944
[6]  
BAZANT ZP, 1976, J ENG MECH DIV-ASCE, V102, P701
[7]   Complete triaxial stress-strain curves of high-strength concrete [J].
Candappa, DC ;
Sanjayan, JG ;
Setunge, S .
JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2001, 13 (03) :209-215
[8]  
Cervenka J., 1998, Proc. FRAMCOS, V3, P1107
[9]   Three dimensional combined fracture-plastic material model for concrete [J].
Cervenka, Jan ;
Papanikolaou, Vassilis K. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2008, 24 (12) :2192-2220
[10]  
CHEN ACT, 1975, J ENG MECH DIV-ASCE, V101, P465