Analysis of Cancer Microarray Data using Constructive Neural Networks and Genetic Algorithms

被引:0
作者
Luque-Baena, R. M. [1 ]
Urda, D. [1 ]
Subirats, J. L. [1 ]
Franco, L. [1 ]
Jerez, J. M. [1 ]
机构
[1] Univ Malaga, Dept Comp Sci, E-29071 Malaga, Spain
来源
PROCEEDINGS IWBBIO 2013: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING | 2013年
关键词
Microarray; Genetic algorithms; Constructive neural networks; FEATURE-SELECTION; MUTUAL INFORMATION; EXPRESSION; CLASSIFICATION; PREDICTION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The analysis of microarray data typically involves a feature selection method in order to select the most relevant genes while at the same time maximizing the information content. This work presents a methodology that use the Welch t-test to filter the number of initial features embedded in two different frameworks to select the predictor genetic profile: genetic algorithm and stepwise forward selection approaches. The genetic algorithm strategy combines mutual information and classification models to predict cancer outcome. Furthermore, a constructive neural network model, C-Mantec, is applied providing reduced network architectures with competitive results in comparison to other classifiers. Six free-public cancer databases are used to test our approach.
引用
收藏
页码:55 / 63
页数:9
相关论文
共 23 条
  • [11] A mixture model-based approach to the clustering of microarray expression data
    McLachlan, GJ
    Bean, RW
    Peel, D
    [J]. BIOINFORMATICS, 2002, 18 (03) : 413 - 422
  • [12] ON ESTIMATION OF ENTROPY AND MUTUAL INFORMATION OF CONTINUOUS DISTRIBUTIONS
    MODDEMEIJER, R
    [J]. SIGNAL PROCESSING, 1989, 16 (03) : 233 - 248
  • [13] Momin BF, 2006, 2006 INTERNATIONAL CONFERENCE ON HYBRID INFORMATION TECHNOLOGY, VOL 1, PROCEEDINGS, P699
  • [14] Pellagatti A, 2003, CANCER RES, V63, P3940
  • [15] Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    Peng, HC
    Long, FH
    Ding, C
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (08) : 1226 - 1238
  • [16] Dimensionality reduction using genetic algorithms
    Raymer, ML
    Punch, WE
    Goodman, ED
    Kuhn, LA
    Jain, AK
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2000, 4 (02) : 164 - 171
  • [17] A review of feature selection techniques in bioinformatics
    Saeys, Yvan
    Inza, Inaki
    Larranaga, Pedro
    [J]. BIOINFORMATICS, 2007, 23 (19) : 2507 - 2517
  • [18] C-Mantec: A novel constructive neural network algorithm incorporating competition between neurons
    Subirats, Jose L.
    Franco, Leonardo
    Jerez, Jose M.
    [J]. NEURAL NETWORKS, 2012, 26 : 130 - 140
  • [19] A New Decomposition Algorithm for Threshold Synthesis and Generalization of Boolean Functions
    Subirats, Jose L.
    Jerez, Jose M.
    Franco, Leonardo
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (10) : 3188 - 3196
  • [20] Object detection using feature subset selection
    Sun, ZH
    Bebis, G
    Miller, R
    [J]. PATTERN RECOGNITION, 2004, 37 (11) : 2165 - 2176