Analysis of Cancer Microarray Data using Constructive Neural Networks and Genetic Algorithms

被引:0
作者
Luque-Baena, R. M. [1 ]
Urda, D. [1 ]
Subirats, J. L. [1 ]
Franco, L. [1 ]
Jerez, J. M. [1 ]
机构
[1] Univ Malaga, Dept Comp Sci, E-29071 Malaga, Spain
来源
PROCEEDINGS IWBBIO 2013: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING | 2013年
关键词
Microarray; Genetic algorithms; Constructive neural networks; FEATURE-SELECTION; MUTUAL INFORMATION; EXPRESSION; CLASSIFICATION; PREDICTION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The analysis of microarray data typically involves a feature selection method in order to select the most relevant genes while at the same time maximizing the information content. This work presents a methodology that use the Welch t-test to filter the number of initial features embedded in two different frameworks to select the predictor genetic profile: genetic algorithm and stepwise forward selection approaches. The genetic algorithm strategy combines mutual information and classification models to predict cancer outcome. Furthermore, a constructive neural network model, C-Mantec, is applied providing reduced network architectures with competitive results in comparison to other classifiers. Six free-public cancer databases are used to test our approach.
引用
收藏
页码:55 / 63
页数:9
相关论文
共 23 条
  • [1] [Anonymous], 2011, Statistical Pattern Recognition
  • [2] [Anonymous], BMC BIOINFORMATICS
  • [3] A hybrid LDA and genetic algorithm for gene selection and classification of microarray data
    Bonilla Huerta, Edmundo
    Duval, Beatrice
    Hao, Jin-Kao
    [J]. NEUROCOMPUTING, 2010, 73 (13-15) : 2375 - 2383
  • [4] A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue
    Chen, Zhenyu
    Li, Jianping
    Wei, Liwei
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2007, 41 (02) : 161 - 175
  • [5] A THERMAL PERCEPTRON LEARNING RULE
    FREAN, M
    [J]. NEURAL COMPUTATION, 1992, 4 (06) : 946 - 957
  • [6] Sensitivity and specificity based multiobjective approach for feature selection: Application to cancer diagnosis
    Garcia-Nieto, J.
    Alba, E.
    Jourdan, L.
    Talbi, E.
    [J]. INFORMATION PROCESSING LETTERS, 2009, 109 (16) : 887 - 896
  • [7] A cooperative constructive method for neural networks for pattern recognition
    Garcia-Pedrajas, Nicolas
    Ortiz-Boyer, Domingo
    [J]. PATTERN RECOGNITION, 2007, 40 (01) : 80 - 98
  • [8] Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    Golub, TR
    Slonim, DK
    Tamayo, P
    Huard, C
    Gaasenbeek, M
    Mesirov, JP
    Coller, H
    Loh, ML
    Downing, JR
    Caligiuri, MA
    Bloomfield, CD
    Lander, ES
    [J]. SCIENCE, 1999, 286 (5439) : 531 - 537
  • [9] Gait Feature Subset Selection by Mutual Information
    Guo, Baofeng
    Nixon, Mark S.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2009, 39 (01): : 36 - 46
  • [10] Joint classifier and feature optimization for comprehensive cancer diagnosis using gene expression data
    Krishnapuram, B
    Carin, L
    Hartemink, AJ
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2004, 11 (2-3) : 227 - 242