Numerical solution for the wave equation

被引:1
|
作者
Patricio, M. F. [1 ]
机构
[1] Univ Coimbra, Dept Math, Coimbra, Portugal
关键词
hyperbolic systems; finite differences; stability; FINITE-DIFFERENCE SCHEMES;
D O I
10.1080/00207160701609532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study numerical solutions for a hyperbolic system of equations using finite differences. In this setting, we propose the method of lines, with high precision in space. A class of some explicit, implicit and also semi-implicit schemes, with code variable methods, are presented. Finally, the analysis of some qualitative and quantitative proprieties of these methods is included.
引用
收藏
页码:589 / 597
页数:9
相关论文
共 50 条
  • [1] STUDY OF THE NUMERICAL SOLUTION TO THE WAVE EQUATION
    Riecanova, I.
    Handlovicova, A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2018, 87 (02): : 317 - 332
  • [2] Numerical solution of the linear inverse wave equation
    Foadian, Saedeh
    Pourgholi, Reza
    Esfahani, Amin
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 1907 - 1926
  • [3] Numerical Solution of the Modified Equal Width Wave Equation
    Karakoc, Seydi Battal Gazi
    Geyikli, Turabi
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 2012
  • [4] Numerical solution of the poroviscoelastic wave equation on a staggered mesh
    Carcione, JM
    Helle, HB
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 154 (02) : 520 - 527
  • [5] Numerical Solution of Fractional Diffusion-Wave Equation
    Chen, An
    Li, Changpin
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (01) : 19 - 39
  • [6] NUMERICAL SOLUTION OF WAVE EQUATION FOR ELECTRON PLASMA OSCILLATIONS
    HORTON, CW
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (02): : 313 - &
  • [7] Numerical solution of full wave equation forfast wave current drive in tokamak
    Liu, Yan
    Gong, Xueyu
    Yang, Lei
    Peng, Xiaowei
    Yin, Lan
    Jisuan Wuli/Chinese Journal of Computational Physics, 2012, 29 (03): : 375 - 382
  • [8] The analytical solution and numerical solution of the fractional diffusion-wave equation with damping
    Chen, J.
    Liu, F.
    Anh, V.
    Shen, S.
    Liu, Q.
    Liao, C.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 1737 - 1748
  • [9] NUMERICAL-SOLUTION OF REGULARIZED LONG-WAVE EQUATION
    JAIN, PC
    SHANKAR, R
    SINGH, TV
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1993, 9 (07): : 579 - 586
  • [10] On the numerical solution of quasilinear wave equation with strong dissipative term
    Aytekin Gülle
    Applied Mathematics and Mechanics, 2004, 25 : 806 - 811