Constant mean curvature surfaces in hyperbolic 3-space via loop groups

被引:14
作者
Dorfmeister, Josef F. [1 ]
Inoguchi, Jun-ichi [2 ]
Kobayashi, Shimpei [3 ]
机构
[1] Tech Univ Munich, Fak Math, D-85747 Garching, Germany
[2] Yamagata Univ, Fac Sci, Dept Math Sci, Yamagata 9908560, Japan
[3] Hirosaki Univ, Grad Sch Sci & Technol, Hirosaki, Aomori 0368561, Japan
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2014年 / 686卷
关键词
WEIERSTRASS-TYPE REPRESENTATION; HARMONIC MAPS; MINIMAL-SURFACES; TORI; CONSTRUCTION; SPACE;
D O I
10.1515/crelle-2012-0024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In hyperbolic 3-space H-3 surfaces of constant mean curvature H come in three types, corresponding to the cases 0 <= H < 1, H = 1, H > 1. Via the Lawson correspondence the latter two cases correspond to constant mean curvature surfaces in Euclidean 3-space E-3 with H = 0 and H not equal 0, respectively. These surface classes have been investigated intensively in the literature. For the case 0 <= H < 1 there is no Lawson correspondence in Euclidean space and there are relatively few publications. Examples have been difficult to construct. In this paper we present a generalized Weierstrass type representation for surfaces of constant mean curvature in H-3 with particular emphasis on the case of mean curvature 0 <= H < 1. In particular, the generalized Weierstrass type representation presented in this paper enables us to construct simultaneously minimal surfaces (H = 0) and non-minimal constant mean curvature surfaces (0 < H < 1).
引用
收藏
页码:1 / 36
页数:36
相关论文
共 47 条
[1]   COMPLETE MINIMAL VARIETIES IN HYPERBOLIC SPACE [J].
ANDERSON, MT .
INVENTIONES MATHEMATICAE, 1982, 69 (03) :477-494
[2]  
[Anonymous], 1983, SEMIRIEMANNIAN GEOME
[3]  
[Anonymous], 1985, Tokyo J. Math.
[4]  
[Anonymous], 2008, Comparison theorems in Riemannian geometry
[5]  
[Anonymous], 2002, DIFFERENTIAL GEOMETR
[6]  
Arnold V. I., 1985, Monogr. Math., V82
[7]   WILLMORE TORI WITH UMBILIC LINES AND MINIMAL-SURFACES IN HYPERBOLIC SPACE [J].
BABICH, M ;
BOBENKO, A .
DUKE MATHEMATICAL JOURNAL, 1993, 72 (01) :151-185
[8]   Weierstrass-type representation for harmonic maps into general symmetric spaces via loop groups [J].
Balan, V ;
Dorfmeister, J .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2005, 57 (01) :69-94
[9]   CONSTANT MEAN-CURVATURE SURFACES AND INTEGRABLE EQUATIONS [J].
BOBENKO, AI .
RUSSIAN MATHEMATICAL SURVEYS, 1991, 46 (04) :1-45
[10]  
BRYANT R, 1987, ASTERISQUE, V154, P321