Asymptotic behaviour of Castelnuovo-Mumford regularity

被引:150
作者
Kodiyalam, V [1 ]
机构
[1] Inst Math Sci, Chennai 600113, India
关键词
D O I
10.1090/S0002-9939-99-05020-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S be a polynomial ring over a field. For a graded S-module generated in degree at most P, the Castelnuovo-Mumford regularity of each of (i) its n(th) symmetric power, (ii) its n(th) torsion-free symmetric power and (iii) the integral closure of its n(th) torsion-free symmetric power is bounded above by a linear function in n with leading coefficient at most P. For a graded ideal I of S, the regularity of I-n is given by a linear function of n for all sufficiently large n. The leading coefficient of this function is identified.
引用
收藏
页码:407 / 411
页数:5
相关论文
共 14 条
[1]  
BERTRAM A, ALGGEOM9707001
[2]  
Bertram Aaron, 1991, J. Amer. Math. Soc., V4, P587, DOI DOI 10.2307/2939270
[3]   Regularity of the powers of an ideal [J].
Chandler, KA .
COMMUNICATIONS IN ALGEBRA, 1997, 25 (12) :3773-3776
[4]   Diagonal subalgebras of bigraded algebras and embeddings of blow-ups of projective spaces [J].
Conca, A ;
Herzog, J ;
Trung, NV ;
Valla, G .
AMERICAN JOURNAL OF MATHEMATICS, 1997, 119 (04) :859-901
[5]  
CONCA A, HILBERT FUNCTION RES
[6]  
CUTKOSKY D, ASYMPTOTIC BEHAV CAT
[7]   LINEAR FREE RESOLUTIONS AND MINIMAL MULTIPLICITY [J].
EISENBUD, D ;
GOTO, S .
JOURNAL OF ALGEBRA, 1984, 88 (01) :89-133
[8]  
Eisenbud D., 1995, COMMUTATIVE ALGEBRA
[9]   GRADED BETTI NUMBERS OF SOME EMBEDDED RATIONAL N-FOLDS [J].
GERAMITA, AV ;
GIMIGLIANO, A ;
PITTELOUD, Y .
MATHEMATISCHE ANNALEN, 1995, 301 (02) :363-380
[10]  
HOA LT, IN PRESS MATH Z