Evolution of disturbances on shallow layers of non-Newtonian fluids

被引:8
作者
Berezin, YA
Hutter, K [1 ]
Spodareva, LA
机构
[1] Tech Univ Darmstadt, Inst Mech, D-64289 Darmstadt, Germany
[2] Inst Theoret & Appl Mech, Novosibirsk 630090, Russia
来源
PHYSICA D | 2000年 / 139卷 / 3-4期
关键词
non-Newtonian fluids; linear analysis; finite-difference scheme;
D O I
10.1016/S0167-2789(00)00019-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stability of shallow layers of non-Newtonian fluids considered in the frame of the two-parametric power-law model of Ostward-de Waele, taking into account the surface tension effect, which gives rise to decreasing domains of unstable wave modes. For the weak nonlinearities two equations, valid in the limits of small and large Ostwald-de Waele numbers, are derived. They are analytically studied and the evolution of some finite disturbance is served numerically by making use of the upwind explicit finite-difference scheme. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:319 / 334
页数:16
相关论文
共 14 条
[1]   WAVE FORMATION ON A VERTICAL FALLING LIQUID-FILM [J].
ALEKSEENKO, SV ;
NAKORYAKOV, VY ;
POKUSAEV, BG .
AICHE JOURNAL, 1985, 31 (09) :1446-1460
[2]   LONG WAVES ON LIQUID FILMS [J].
BENNEY, DJ .
JOURNAL OF MATHEMATICS AND PHYSICS, 1966, 45 (02) :150-&
[3]   Stability analysis of gravity driven shear flows with free surface for power-law fluids [J].
Berezin, YA ;
Hutter, K ;
Spodareva, LA .
ARCHIVE OF APPLIED MECHANICS, 1998, 68 (3-4) :169-178
[4]   NONLINEAR EVOLUTION OF WAVES ON A VERTICALLY FALLING FILM [J].
CHANG, HC ;
DEMEKHIN, EA ;
KOPELEVICH, DI .
JOURNAL OF FLUID MECHANICS, 1993, 250 :433-480
[5]   WAVE EVOLUTION ON A FALLING FILM [J].
CHANG, HC .
ANNUAL REVIEW OF FLUID MECHANICS, 1994, 26 (01) :103-136
[6]   LINEAR-STABILITY OF POWER-LAW LIQUID-FILM FLOWS DOWN AN INCLINED PLANE [J].
HWANG, CC ;
CHEN, JL ;
WANG, JS ;
LIN, JS .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1994, 27 (11) :2297-2301
[7]  
Karpman V. I., 1975, Non-Linear Waves in Dispersive Media
[8]   Stationary waves on an inclined sheet of viscous fluid at high Reynolds and moderate Weber numbers [J].
Lee, JJ ;
Mei, CC .
JOURNAL OF FLUID MECHANICS, 1996, 307 :191-229
[9]   FINITE-AMPLITUDE SIDE-BAND STABILITY OF A VISCOUS FILM [J].
LIN, SP .
JOURNAL OF FLUID MECHANICS, 1974, 63 (APR29) :417-429
[10]   NONLINEAR GRAVITY WAVES IN A THIN SHEET OF VISCOUS FLUID [J].
MEI, CC .
JOURNAL OF MATHEMATICS AND PHYSICS, 1966, 45 (03) :266-&