Hypercube;
Number of proper paths;
2-edge coloring;
EXTRACONNECTIVITY;
GRAPHS;
D O I:
10.1016/j.amc.2018.03.063
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Given an integer 1 <= j < n, define the (j)-coloring of a n-dimensional hypercube H-n to be the 2-coloring of the edges of H-n in which all edges in dimension i, i <= i <= j, j, have color 1 and all other edges have color 2. Cheng et al. (2017) determined the number of distinct shortest properly colored paths between a pair of vertices for the (1)-colored hypercubes. It is natural to consider the number for (j)-coloring, j > 2. In this note, we determine the number of different shortest proper paths in (j)-colored hypercubes for arbitrary j. Moreover, we obtain a more general result. (C) 2018 Elsevier Inc. All rights reserved.
机构:
Univ Paris 11, CNRS, Lab Rech Informat, UMR 8623, F-91405 Orsay, France
Xinjiang Univ, Dept Math, Urumqi 830046, Peoples R ChinaUniv Paris 11, CNRS, Lab Rech Informat, UMR 8623, F-91405 Orsay, France
Yang, Weihua
Meng, Jixiang
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Dept Math, Urumqi 830046, Peoples R ChinaUniv Paris 11, CNRS, Lab Rech Informat, UMR 8623, F-91405 Orsay, France
机构:
Univ Paris 11, CNRS, Lab Rech Informat, UMR 8623, F-91405 Orsay, France
Xinjiang Univ, Dept Math, Urumqi 830046, Peoples R ChinaUniv Paris 11, CNRS, Lab Rech Informat, UMR 8623, F-91405 Orsay, France
Yang, Weihua
Meng, Jixiang
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Dept Math, Urumqi 830046, Peoples R ChinaUniv Paris 11, CNRS, Lab Rech Informat, UMR 8623, F-91405 Orsay, France