ITRAQ-based quantitative proteomic analysis of Fusarium moniliforme (Fusarium verticillioides) in response to Phloridzin inducers

被引:3
|
作者
Zhang, Rong [1 ]
Jiang, Weitao [1 ]
Liu, Xin [2 ]
Duan, Yanan [1 ]
Xiang, Li [1 ]
Wang, Yanfang [3 ]
Jiang, Yuanmao [1 ]
Shen, Xiang [1 ]
Chen, Xuesen [1 ]
Yin, Chengmiao [1 ]
Mao, Zhiquan [1 ]
机构
[1] Shandong Agr Univ, Coll Hort Sci & Engn, State Key Lab Crop Biol, Daizong Rd 61, Tai An 271018, Shandong, Peoples R China
[2] Shandong Agr Univ, Coll Agron, State Key Lab Crop Biol, Tai An 271018, Shandong, Peoples R China
[3] Shandong Agr Univ, Coll Chem & Mat Sci, Tai An 271018, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
F; moniliforme; Phloridzin; Mycelium proteomics; iTRAQ; Differential protein expression; APPLE REPLANT DISEASE; GLUCONOBACTER-OXYDANS; MICROBIAL COMMUNITIES; OXYSPORUM; BIOSYNTHESIS; RESISTANCE; SEEDLINGS; GENES; IDENTIFICATION; PROMOTES;
D O I
10.1186/s12953-021-00170-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Apple replant disease (ARD) has been reported from all major fruit-growing regions of the world, and is often caused by biotic factors (pathogen fungi) and abiotic factors (phenolic compounds). In order to clarify the proteomic differences of Fusarium moniliforme under the action of phloridzin, and to explore the potential mechanism of F. moniliforme as the pathogen of ARD, the role of Fusarium spp. in ARD was further clarified. Methods: In this paper, the quantitative proteomics method iTRAQ analysis technology was used to analyze the proteomic differences of F. moniliforme before and after phloridzin treatment. The differentially expressed protein was validated by qRT-PCR analysis. Results: A total of 4535 proteins were detected, and 293 proteins were found with more than 1.2 times (P< 0.05) differences. In-depth data analysis revealed that 59 proteins were found with more than 1.5 times (P< 0.05) differences, and most proteins were consistent with the result of qRT-PCR. Differentially expressed proteins were influenced a variety of cellular processes, particularly metabolic processes. Among these metabolic pathways, a total of 8 significantly enriched KEGG pathways were identified with at least 2 affiliated proteins with different abundance in conidia and mycelium. Functional pathway analysis indicated that up-regulated proteins were mainly distributed in amino sugar, nucleotide sugar metabolism, glycolysis/ gluconeogenesis and phagosome pathways. Conclusions: This study is the first to perform quantitative proteomic investigation by iTRAQ labeling and LC-MS/MS to identify differentially expressed proteins in F. moniliforme under phloridzin conditions. The results confirmed that F. moniliforme presented a unique protein profile that indicated the adaptive mechanisms of this species to phloridzin environments. The results deepened our understanding of the proteome in F. moniliforme in response to phloridzin inducers and provide a basis for further exploration for improving the efficiency of the fungi as biocontrol agents to control ARD.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] iTRAQ-based quantitative proteomic analysis of silkworm infected with Beauveria bassiana
    Lu, Dingding
    Xu, Ping
    Hou, Chengxiang
    Li, Ruilin
    Hu, Congwu
    Guo, Xijie
    MOLECULAR IMMUNOLOGY, 2021, 135 : 204 - 216
  • [22] iTRAQ-based quantitative proteomic and physiological analysis of the response to N deficiency and the compensation effect in rice
    Xiong, Qiangqiang
    Zhong, Lei
    Shen, Tianhua
    Cao, Chaohao
    He, Haohua
    Chen, Xiaorong
    BMC GENOMICS, 2019, 20 (01)
  • [23] iTRAQ-based quantitative proteomic analysis of conidia and mycelium in the filamentous fungus Metarhizium robertsii
    Wang, Zhangxun
    Zhou, Quan
    Li, Yuandong
    Qiao, Lintao
    Pang, Qi
    Huang, Bo
    FUNGAL BIOLOGY, 2018, 122 (07) : 651 - 658
  • [24] Evaluation of the mirn23a Cluster through an iTRAQ-based Quantitative Proteomic Approach
    Ludwig, Katelyn R.
    Dahl, Richard
    Hummon, Amanda B.
    JOURNAL OF PROTEOME RESEARCH, 2016, 15 (05) : 1497 - 1505
  • [25] iTRAQ-based proteomic analysis of resistant Nicotiana tabacum in response to Bemisia tabaci infestation
    Zhang, Song-tao
    Long, Yue
    Zhang, Song-jie
    Li, Ning
    Chen, De-xin
    Jia, Hong-fang
    Zhang, Hong-ying
    Yang, Yong-xia
    ARTHROPOD-PLANT INTERACTIONS, 2019, 13 (03) : 505 - 516
  • [26] iTRAQ-Based Proteomic Analysis of Watermelon Fruits in Response to Cucumber green mottle mosaic virus Infection
    Li, Xiaodong
    Bi, Xinyue
    An, Mengnan
    Xia, Zihao
    Wu, Yuanhua
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (07)
  • [27] Quantitative iTRAQ-based proteomic analysis of rice grains to assess high night temperature stress
    Zhang, Hong-Yu
    Lei, Gang
    Zhou, Hui-Wen
    He, Chao
    Liao, Jiang-Lin
    Huang, Ying-Jin
    PROTEOMICS, 2017, 17 (05)
  • [28] iTRAQ-based quantitative proteomic analysis of Takifugu fasciatus liver in response to low-temperature stress
    Wen, Xin
    Zhang, Xinyu
    Hu, Yadong
    Xu, Jiejie
    Wang, Tao
    Yin, Shaowu
    JOURNAL OF PROTEOMICS, 2019, 201 : 27 - 36
  • [29] iTRAQ-based quantitative proteomic analysis provides insight for molecular mechanism of neuroticism
    Tian, Lei
    You, Hong-Zhao
    Wu, Hao
    Wei, Yu
    Zheng, Min
    He, Lei
    Liu, Jin-Ying
    Guo, Shu-Zhen
    Zhao, Yan
    Zhou, Ren-Lai
    Hu, Xingang
    CLINICAL PROTEOMICS, 2019, 16 (01)
  • [30] iTRAQ-based quantitative proteomic analysis of mycelium in different predation periods in nematode trapping fungus Duddingtonia flagrans
    Liang, Meng
    Du, Shan
    Dong, Wenjun
    Fu, Jiangtao
    Li, Zehao
    Qiao, Yidan
    Yin, Xiangji
    Nie, Fugui
    Yang, Xiaoye
    Wang, Rui
    BIOLOGICAL CONTROL, 2019, 134 : 63 - 71