Machine Learning for Real-Time Diagnostics of Cold Atmospheric Plasma Sources

被引:43
|
作者
Gidon, Dogan [1 ]
Pei, Xuekai [1 ]
Bonzanini, Angelo D. [1 ]
Graves, David B. [1 ]
Mesbah, Ali [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Cold atmospheric plasma (CAP); electroacoustic signal; Gaussian process (GP); k-means clustering; linear regression; machine learning (ML); optical emission spectrum (OES); real-time diagnostics; MODEL;
D O I
10.1109/TRPMS.2019.2910220
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Real-time diagnostics of cold atmospheric plasma (CAP) sources can be challenging due to the requirement for expensive equipment and complicated analysis. Data analytics that rely on machine learning (ML) methods can help address this challenge. In this paper, we demonstrate the application of several ML methods for real-time diagnosis of CAPs using information-rich optical emission spectra and electro-acoustic emission. We show that data analytics based on ML can provide a simple and effective means for estimation of operation-relevant parameters such as rotational and vibrational temperature and substrate characteristic in real-time. Our findings indicate a great potential promise for ML for real-time diagnostics of CAPs.
引用
收藏
页码:597 / 605
页数:9
相关论文
共 50 条
  • [1] Accelerated real-time plasma diagnostics: Integrating argon collisional-radiative model with machine learning methods
    Srikar, P. S. N. S. R.
    Suresh, Indhu
    Gangwar, R. K.
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2024, 215
  • [2] Real-time interferometric diagnostics of rubidium plasma
    Djotyan G.P.
    Bakos J.S.
    Kedves M.Á.
    Ráczkevi B.
    Dzsotjan D.
    Varga-Umbrich K.
    Sörlei Z.
    Szigeti J.
    Ignácz P.
    Lévai P.
    Czitrovszky A.
    Nagy A.
    Dombi P.
    Rácz P.
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 884 : 25 - 30
  • [3] Nanomaterial Innovations and Machine Learning in Gas Sensing Technologies for Real-Time Health Diagnostics
    Harun-Or-Rashid, Md.
    Mirzaei, Sahar
    Nasiri, Noushin
    ACS SENSORS, 2025, : 1620 - 1640
  • [4] Machine Learning Application for Real-Time Simulator
    Hadadi, Azadeh
    Chardonnet, Jean-Remy
    Guillet, Christophe
    Ovtcharova, Jivka
    PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2024, 2024, : 1 - 5
  • [5] Learning system in real-time machine vision
    Li, Wenbin
    Lv, Zhihan
    Cosker, Darren
    Yang, Yongliang
    NEUROCOMPUTING, 2018, 288 : 1 - 2
  • [6] A Compositional Approach for Real-Time Machine Learning
    Allen, Nathan
    Raje, Yash
    Ro, Jin Woo
    Roop, Partha
    17TH ACM-IEEE INTERNATIONAL CONFERENCE ON FORMAL METHODS AND MODELS FOR SYSTEM DESIGN (MEMOCODE), 2019,
  • [7] Real-Time Machine Learning: The Missing Pieces
    Nishihara, Robert
    Moritz, Philipp
    Wang, Stephanie
    Tumanov, Alexey
    Paul, William
    Schleier-Smith, Johann
    Liaw, Richard
    Niknami, Mehrdad
    Jordan, Michael, I
    Stoica, Ion
    PROCEEDINGS OF THE 16TH WORKSHOP ON HOT TOPICS IN OPERATING SYSTEMS (HOTOS 2017), 2017, : 106 - 110
  • [8] Machine learning for real-time remote detection
    Labbe, Benjamin
    Fournier, Jerome
    Henaff, Gilles
    Bascle, Benedicte
    Canu, Stephane
    OPTICS AND PHOTONICS FOR COUNTERTERRORISM AND CRIME FIGHTING VI AND OPTICAL MATERIALS IN DEFENCE SYSTEMS TECHNOLOGY VII, 2010, 7838
  • [9] Introducing adaptive cold atmospheric plasma: The perspective of adaptive cold plasma cancer treatments based on real-time electrochemical impedance spectroscopy
    Lin, Li
    Hou, Zichao
    Yao, Xiaoliang
    Liu, Yi
    Sirigiri, Jagadishwar R.
    Lee, Taeyoung
    Keidar, Michael
    PHYSICS OF PLASMAS, 2020, 27 (06)
  • [10] DIAGNOSTICS FOR REAL-TIME PLASMA CONTROL IN PBX-M
    KAITA, R
    BATHA, S
    BELL, RE
    BERNABEI, S
    HATCHER, R
    KOZUB, T
    KUGEL, H
    LEVINTON, F
    OKABAYASHI, M
    SESNIC, S
    VONGOELER, S
    ZOLFAGHARI, A
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (01): : 519 - 521