Homogenization of the evolutionary Navier-Stokes system

被引:31
作者
Feireisl, Eduard [1 ]
Namlyeyeva, Yuliya [1 ,2 ]
Necasova, Sarka [1 ]
机构
[1] Acad Sci Czech Republic, Inst Math, CR-11567 Prague 1, Czech Republic
[2] NAS Ukraine, Inst Appl Math & Mech, UA-83114 Donetsk, Ukraine
关键词
PERFORATED DOMAINS; JOHN DOMAINS; EQUATIONS; BOUNDARY; LIMIT;
D O I
10.1007/s00229-015-0778-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the homogenization problem for the evolutionary Navier-Stokes system under the critical size of obstacles. Convergence towards the limit system of Brinkman's type is shown under very mild assumptions concerning the shape of the obstacles and their mutual distance.
引用
收藏
页码:251 / 274
页数:24
相关论文
共 19 条
[1]   Solutions of the divergence operator on John domains [J].
Acosta, Gabriel ;
Duran, Ricardo G. ;
Muschietti, Maria A. .
ADVANCES IN MATHEMATICS, 2006, 206 (02) :373-401
[2]  
Allaire A., 1991, ANN SCUOLA NORM SUP, V18, P475
[3]  
Allaire G., 1990, ARCH RATIONAL MECH A, V113, P261, DOI DOI 10.1007/BF00375066
[4]  
ALLAIRE G., 1990, ARCH RATION MECH AN, V113, P209
[5]  
[Anonymous], 1994, Transl. Math. Monogr.
[6]   Boundary Behavior of Viscous Fluids: Influence of Wall Roughness and Friction-driven Boundary Conditions [J].
Bucur, Dorin ;
Feireisl, Eduard ;
Necasova, Sarka .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (01) :117-138
[7]   On the Asymptotic Limit of Flows Past a Ribbed Boundary [J].
Bucur, Dorin ;
Feireisl, Eduard ;
Necasova, Sarka .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2008, 10 (04) :554-568
[8]  
Dal Maso G, 1999, J ANAL MATH, V79, P63
[9]  
Dal Maso G., 2001, ADV MATH SCI APPL, V11, P721
[10]   The mean-field limit for solid particles in a Navier-Stokes flow [J].
Desvillettes, Laurent ;
Golse, Francois ;
Ricci, Valeria .
JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (05) :941-967