Neutrosophic C-means Clustering with Local Information and Noise Distance-Based Kernel Metric Image Segmentation

被引:0
作者
Lu, Zhenyu [1 ,2 ]
Qiu, Yunan [1 ]
Zhan, Tianming [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing, Jiangsu, Peoples R China
[2] Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing, Jiangsu, Peoples R China
[3] Nanjing Audit Univ, Sch Informat & Engn, Nanjing, Jiangsu, Peoples R China
来源
ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I | 2018年 / 11164卷
基金
中国国家自然科学基金;
关键词
Image segmentation; Noise clustering; Fuzzy clustering; Neutrosophic clustering;
D O I
10.1007/978-3-030-00776-8_16
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The traditional FCM algorithm is developed on the basis of classical fuzzy theory, though the classical fuzzy theory has its own limitations. The lack of expressive ability of uncertain information makes it hard for FCM algorithm to handle clustered boundary pixels and outliers. This paper proposes a Neutrosophic C-means Clustering with Local Information and Noise Distance-based Kernel Metric for Image Segmentation (NKWNLICM). The concept of local fuzzy information and noise distance in the Neutrosophic C-means Clustering Algorithm (NCM) is introduced in the paper. The algorithm improves the efficiency by leaving out parameter setting for different noises when segmenting pictures, and it also improves the robustness. Simulation results show that the algorithm has better segmentation results for noisy images.
引用
收藏
页码:168 / 178
页数:11
相关论文
共 14 条
  • [1] CONVERGENCE THEORY FOR FUZZY C-MEANS - COUNTEREXAMPLES AND REPAIRS
    BEZDEK, JC
    HATHAWAY, RJ
    SABIN, MJ
    TUCKER, WT
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1987, 17 (05): : 873 - 877
  • [2] Fuzzy c-means clustering with spatial information for image segmentation
    Chuang, KS
    Tzeng, HL
    Chen, S
    Wu, J
    Chen, TJ
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2006, 30 (01) : 9 - 15
  • [3] CHARACTERIZATION AND DETECTION OF NOISE IN CLUSTERING
    DAVE, RN
    [J]. PATTERN RECOGNITION LETTERS, 1991, 12 (11) : 657 - 664
  • [4] Fuzzy C-Means Clustering With Local Information and Kernel Metric for Image Segmentation
    Gong, Maoguo
    Liang, Yan
    Shi, Jiao
    Ma, Wenping
    Ma, Jingjing
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (02) : 573 - 584
  • [5] NCM: Neutrosophic c-means clustering algorithm
    Guo, Yanhui
    Sengur, Abdulkadir
    [J]. PATTERN RECOGNITION, 2015, 48 (08) : 2710 - 2724
  • [6] Multi-View Object Retrieval via Multi-Scale Topic Models
    Hong, Richang
    Hu, Zhenzhen
    Wang, Ruxin
    Wang, Meng
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (12) : 5814 - 5827
  • [7] Flickr Circles: Aesthetic Tendency Discovery by Multi-View Regularized Topic Modeling
    Hong, Richang
    Zhang, Luming
    Zhang, Chao
    Zimmermann, Roger
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (08) : 1555 - 1567
  • [8] Unified Photo Enhancement by Discovering Aesthetic Communities From Flickr
    Hong, Richang
    Zhang, Luming
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (03) : 1124 - 1135
  • [9] Integrating QDWD with pattern distinctness and local contrast for underwater saliency detection
    Jian, Muwei
    Qi, Qiang
    Dong, Junyu
    Yin, Yilong
    Lam, Kin-Man
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 53 : 31 - 41
  • [10] Image Segmentation Using Higher-Order Correlation Clustering
    Kim, Sungwoong
    Yoo, Chang D.
    Nowozin, Sebastian
    Kohli, Pushmeet
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (09) : 1761 - 1774