Automated sewer inspection using image processing and a neural classifier

被引:8
作者
Duran, O [1 ]
Althoefer, K [1 ]
Seneviratne, LD [1 ]
机构
[1] Kings Coll London, Dept Mech Engn, London WC2R 2LS, England
来源
PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3 | 2002年
关键词
D O I
10.1109/IJCNN.2002.1007652
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The focus of the research presented here is on the automated assessment of sewer pipe conditions using a laser-based sensor. The proposed method involves image and data processing algorithms categorising signals acquired from the internal pipe surface. Fault identification is carried out using a neural network. Experimental results are presented.
引用
收藏
页码:1126 / 1131
页数:2
相关论文
共 16 条
[1]  
Bin Hussen M. P., 2000, Neural Network World, V10, P597
[2]  
Bin Hussen M. P., 2000, P EUREL EUR ADV ROB, V1
[3]  
CAMPBELL G, 1995, INT NO DIG 95 DRESD
[4]  
DURAN O, 2002, IN PRESS P 7 INT C I
[5]   Direct least square fitting of ellipses [J].
Fitzgibbon, A ;
Pilu, M ;
Fisher, RB .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (05) :476-480
[6]  
Gonzalez RC, 1987, Digital Image Processing, V2nd
[7]  
Halir R, 1998, WSCG '98, VOL 1, P125
[8]  
Haykin S., 1994, NEURAL NETWORKS COMP
[9]   Progress in supervised neural networks [J].
Hush, Don R. ;
Horne, Bill G. .
IEEE SIGNAL PROCESSING MAGAZINE, 1993, 10 (01) :8-39
[10]   A SCALED CONJUGATE-GRADIENT ALGORITHM FOR FAST SUPERVISED LEARNING [J].
MOLLER, MF .
NEURAL NETWORKS, 1993, 6 (04) :525-533