Instance-Optimal Goal-Oriented Adaptivity

被引:6
作者
Innerberger, Michael [1 ]
Praetorius, Dirk [1 ]
机构
[1] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10-E101-4, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Adaptive Finite Element Method; Goal-Oriented Algorithm; Quantity of Interest; Maximum Marking Strategy; Convergence; Instance Optimality; OPTIMAL CONVERGENCE-RATES; FINITE-ELEMENT METHODS; FEM;
D O I
10.1515/cmam-2019-0115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an adaptive finite element method with arbitrary but fixed polynomial degree p >= where adaptivity is driven by an edge-based residual error estimator. Based on the modified maximum criterion from [L. Diening, C. Kreuzer and R. Stevenson, Instance optimality of the adaptive maximum strategy, Found. Comput. Math. 16 (2016), no. 1, 33-68], we propose a goal-oriented adaptive algorithm and prove that it is instance optimal. More precisely, the goal error is bounded by the product of the total errors (being the sum of energy error plus data oscillations) of the primal and the dual problem, and the proposed algorithm is instance optimal with respect to this upper bound. Numerical experiments underline our theoretical findings.
引用
收藏
页码:109 / 126
页数:18
相关论文
共 28 条
  • [1] WEIGHTED MARKING FOR GOAL-ORIENTED ADAPTIVE FINITE ELEMENT METHODS
    Becker, Roland
    Estecahandy, Elodie
    Trujillo, David
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2451 - 2469
  • [2] Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems
    Bespalov, Alex
    Haberl, Alexander
    Praetorius, Dirk
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 317 : 318 - 340
  • [3] Adaptive finite element methods with convergence rates
    Binev, P
    Dahmen, W
    DeVore, R
    [J]. NUMERISCHE MATHEMATIK, 2004, 97 (02) : 219 - 268
  • [4] Binev P., 2002, Serdica Math. J., V28, P391
  • [5] Axioms of adaptivity
    Carstensen, C.
    Feischl, M.
    Page, M.
    Praetorius, D.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (06) : 1195 - 1253
  • [6] Quasi-optimal convergence rate for an adaptive finite element method
    Cascon, J. Manuel
    Kreuzer, Christian
    Nochetto, Ricardo H.
    Siebert, Kunibert G.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) : 2524 - 2550
  • [7] Instance Optimality of the Adaptive Maximum Strategy
    Diening, Lars
    Kreuzer, Christian
    Stevenson, Rob
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (01) : 33 - 68
  • [8] A convergent adaptive algorithm for Poisson's equation
    Dorfler, W
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) : 1106 - 1124
  • [9] Optimal convergence behavior of adaptive FEM driven by simple (h - h/2)-type error estimators
    Erath, Christoph
    Gantner, Gregor
    Praetorius, Dirk
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (03) : 623 - 642
  • [10] ADAPTIVE FEM WITH OPTIMAL CONVERGENCE RATES FOR A CERTAIN CLASS OF NONSYMMETRIC AND POSSIBLY NONLINEAR PROBLEMS
    Feischl, M.
    Fuehrer, T.
    Praetorius, D.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 601 - 625