Predicting single-cell gene expression profiles of imaging flow cytometry data with machine learning

被引:15
作者
Chlis, Nikolaos-Kosmas [1 ,2 ]
Rausch, Lisa [3 ]
Brocker, Thomas [3 ]
Kranich, Jan [3 ]
Theis, Fabian J. [1 ,4 ]
机构
[1] Helmholtz Zentrum Munchen, Inst Computat Biol, D-85764 Neuherberg, Germany
[2] Roche Innovat Ctr Munich, Large Mol Res, Roche Pharma Res & Early Dev, D-82377 Penzberg, Germany
[3] Ludwig Maximilian Univ Munich, Med Fac, Inst Immunol, D-82152 Planegg Martinsried, Germany
[4] Tech Univ Munich, Dept Math, D-85748 Garching, Germany
关键词
HEMATOPOIETIC STEM-CELLS; T-CELLS; CD8;
D O I
10.1093/nar/gkaa926
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
High-content imaging and single-cell genomics are two of the most prominent high-throughput technologies for studying cellular properties and functions at scale. Recent studies have demonstrated that information in large imaging datasets can be used to estimate gene mutations and to predict the cell-cycle state and the cellular decision making directly from cellular morphology. Thus, high-throughput imaging methodologies, such as imaging flow cytometry can potentially aim beyond simple sorting of cellpopulations. We introduce IFC-seq, a machine learning methodology for predicting the expression profile of every cell in an imaging flow cytometry experiment. Since it is to-date unfeasible to observe singlecell gene expression and morphology in flow, we integrate uncoupled imaging data with an independent transcriptomics dataset by leveraging common surface markers. We demonstrate that IFC-seq successfully models gene expression of a moderate number of key gene-markers for two independent imaging flow cytometry datasets: (i) human blood mononuclear cells and (ii) mouse myeloid progenitor cells. In the case of mouse myeloid progenitor cells IFC-seq can predict gene expression directly from brightfield images in a label-free manner, using a convolutional neural network. The proposed method promises to add gene expression information to existing and new imaging flow cytometry datasets, at no additional cost.
引用
收藏
页码:11335 / 11346
页数:12
相关论文
共 67 条
[41]   Intelligent Image-Activated Cell Sorting [J].
Nitta, Nao ;
Sugimura, Takeaki ;
Isozaki, Akihiro ;
Mikami, Hideharu ;
Hiraki, Kei ;
Sakuma, Shinya ;
Iino, Takanori ;
Arai, Fumihito ;
Endo, Taichiro ;
Fujiwaki, Yasuhiro ;
Fukuzawa, Hideya ;
Hase, Misa ;
Hayakawa, Takeshi ;
Hiramatsu, Kotaro ;
Hoshino, Yu ;
Inaba, Mary ;
Ito, Takuro ;
Karakawa, Hiroshi ;
Kasai, Yusuke ;
Koizumi, Kenichi ;
Lee, SangWook ;
Lei, Cheng ;
Li, Ming ;
Maeno, Takanori ;
Matsusaka, Satoshi ;
Murakami, Daichi ;
Nakagawa, Atsuhiro ;
Oguchi, Yusuke ;
Oikawa, Minoru ;
Ota, Tadataka ;
Shiba, Kiyotaka ;
Shintaku, Hirofumi ;
Shirasaki, Yoshitaka ;
Suga, Kanako ;
Suzuki, Yuta ;
Suzuki, Nobutake ;
Tanaka, Yo ;
Tezuka, Hiroshi ;
Toyokawa, Chihana ;
Yalikun, Yaxiaer ;
Yamada, Makoto ;
Yamagishi, Mai ;
Yamano, Takashi ;
Yasumoto, Atsushi ;
Yatomi, Yutaka ;
Yazawa, Masayuki ;
Di Carlo, Dino ;
Hosokawa, Yoichiroh ;
Uemura, Sotaro ;
Ozeki, Yasuyuki .
CELL, 2018, 175 (01) :266-+
[42]   Label-free classification of cells based on supervised machine learning of subcellular structures [J].
Ozaki, Yusuke ;
Yamada, Hidenao ;
Kikuchi, Hirotoshi ;
Hirotsu, Amane ;
Murakami, Tomohiro ;
Matsumoto, Tomohiro ;
Kawabata, Toshiki ;
Hiramatsu, Yoshihiro ;
Kamiya, Kinji ;
Yamauchi, Toyohiko ;
Goto, Kentaro ;
Ueda, Yukio ;
Okazaki, Shigetoshi ;
Kitagawa, Masatoshi ;
Takeuchi, Hiroya ;
Konno, Hiroyuki .
PLOS ONE, 2019, 14 (01)
[43]  
Pacheco-Castro A, 1998, J IMMUNOL, V161, P3152
[44]   Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors [J].
Paul, Franziska ;
Arkin, Ya'ara ;
Giladi, Amir ;
Jaitin, Diego Adhemar ;
Kenigsberg, Ephraim ;
Keren-Shaul, Hadas ;
Winter, Deborah ;
Lara-Astiaso, David ;
Gury, Meital ;
Weiner, Assaf ;
David, Eyal ;
Cohen, Nadav ;
Lauridsen, Felicia Kathrine Bratt ;
Haas, Simon ;
Schlitzer, Andreas ;
Mildner, Alexander ;
Ginhoux, Florent ;
Jung, Steffen ;
Trumpp, Andreas ;
Porse, Bo Torben ;
Tanay, Amos ;
Amit, Ido .
CELL, 2015, 163 (07) :1663-1677
[45]  
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
[46]   Forced expression of IL-7R promotes CD8 T cell cytotoxicity to self antigen [J].
Peng, YuFeng .
PLOS ONE, 2017, 12 (12)
[47]   Innovation - High-throughput fluorescence microscopy for systems biology [J].
Pepperkok, Rainer ;
Ellenberg, Jan .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2006, 7 (09) :690-696
[48]   Flow Cytometry of Nonhematopoietic Neoplasms [J].
Pillai, Vinodh ;
Dorfman, David M. .
ACTA CYTOLOGICA, 2016, 60 (04) :336-343
[49]   A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte [J].
Plasschaert, Lindsey W. ;
Zilionis, Rapolas ;
Choo-Wing, Rayman ;
Savova, Virginia ;
Knehr, Judith ;
Roma, Guglielmo ;
Klein, Allon M. ;
Jaffe, Aron B. .
NATURE, 2018, 560 (7718) :377-+
[50]   Single-cell analysis of CD4+T-cell differentiation reveals three major cell states and progressive acceleration of proliferation [J].
Proserpio, Valentina ;
Piccolo, Andrea ;
Haim-Vilmovsky, Liora ;
Kar, Gozde ;
Lonnberg, Tapio ;
Svensson, Valentine ;
Pramanik, Jhuma ;
Natarajan, Kedar Nath ;
Zhai, Weichao ;
Zhang, Xiuwei ;
Donati, Giacomo ;
Kayikci, Melis ;
Kotar, Jurij ;
McKenzie, Andrew N. J. ;
Montandon, Ruddy ;
Billker, Oliver ;
Woodhouse, Steven ;
Cicuta, Pietro ;
Nicodemi, Mario ;
Teichmann, Sarah A. .
GENOME BIOLOGY, 2016, 17