Predicting single-cell gene expression profiles of imaging flow cytometry data with machine learning

被引:13
作者
Chlis, Nikolaos-Kosmas [1 ,2 ]
Rausch, Lisa [3 ]
Brocker, Thomas [3 ]
Kranich, Jan [3 ]
Theis, Fabian J. [1 ,4 ]
机构
[1] Helmholtz Zentrum Munchen, Inst Computat Biol, D-85764 Neuherberg, Germany
[2] Roche Innovat Ctr Munich, Large Mol Res, Roche Pharma Res & Early Dev, D-82377 Penzberg, Germany
[3] Ludwig Maximilian Univ Munich, Med Fac, Inst Immunol, D-82152 Planegg Martinsried, Germany
[4] Tech Univ Munich, Dept Math, D-85748 Garching, Germany
关键词
HEMATOPOIETIC STEM-CELLS; T-CELLS; CD8;
D O I
10.1093/nar/gkaa926
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
High-content imaging and single-cell genomics are two of the most prominent high-throughput technologies for studying cellular properties and functions at scale. Recent studies have demonstrated that information in large imaging datasets can be used to estimate gene mutations and to predict the cell-cycle state and the cellular decision making directly from cellular morphology. Thus, high-throughput imaging methodologies, such as imaging flow cytometry can potentially aim beyond simple sorting of cellpopulations. We introduce IFC-seq, a machine learning methodology for predicting the expression profile of every cell in an imaging flow cytometry experiment. Since it is to-date unfeasible to observe singlecell gene expression and morphology in flow, we integrate uncoupled imaging data with an independent transcriptomics dataset by leveraging common surface markers. We demonstrate that IFC-seq successfully models gene expression of a moderate number of key gene-markers for two independent imaging flow cytometry datasets: (i) human blood mononuclear cells and (ii) mouse myeloid progenitor cells. In the case of mouse myeloid progenitor cells IFC-seq can predict gene expression directly from brightfield images in a label-free manner, using a convolutional neural network. The proposed method promises to add gene expression information to existing and new imaging flow cytometry datasets, at no additional cost.
引用
收藏
页码:11335 / 11346
页数:12
相关论文
共 67 条
[1]  
Angerer Philipp, 2017, Current Opinion in Systems Biology, V4, P85, DOI 10.1016/j.coisb.2017.07.004
[2]   Spatial detection of fetal marker genes expressed at low level in adult human heart tissue [J].
Asp, Michaela ;
Salmen, Fredrik ;
Stahl, Patrik L. ;
Vickovic, Sanja ;
Felldin, Ulrika ;
Lofling, Marie ;
Navarro, Jose Fernandez ;
Maaskola, Jonas ;
Eriksson, Maria J. ;
Persson, Bengt ;
Corbascio, Matthias ;
Persson, Hans ;
Linde, Cecilia ;
Lundeberg, Joakim .
SCIENTIFIC REPORTS, 2017, 7
[3]   Cellular image analysis and imaging by flow cytometry [J].
Basiji, David A. ;
Ortyn, William E. ;
Liang, Luchuan ;
Venkatachalam, Vidya ;
Morrissey, Philip .
CLINICS IN LABORATORY MEDICINE, 2007, 27 (03) :653-+
[4]   Label-free cell cycle analysis for high-throughput imaging flow cytometry [J].
Blasi, Thomas ;
Hennig, Holger ;
Summers, Huw D. ;
Theis, Fabian J. ;
Cerveira, Joana ;
Patterson, James O. ;
Davies, Derek ;
Filby, Andrew ;
Carpenter, Anne E. ;
Rees, Paul .
NATURE COMMUNICATIONS, 2016, 7
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution [J].
Briggs, James A. ;
Weinreb, Caleb ;
Wagner, Daniel E. ;
Megason, Sean ;
Peshkin, Leonid ;
Kirschner, Marc W. ;
Klein, Allon M. .
SCIENCE, 2018, 360 (6392) :980-+
[7]  
Brown M, 2000, CLIN CHEM, V46, P1221
[8]   Prospective identification of hematopoietic lineage choice by deep learning [J].
Buggenthin, Felix ;
Buettner, Florian ;
Hoppe, Philipp S. ;
Endele, Max ;
Kroiss, Manuel ;
Strasser, Michael ;
Schwarzfischer, Michael ;
Loeffler, Dirk ;
Kokkaliaris, Konstantinos D. ;
Hilsenbeck, Oliver ;
Schroeder, Timm ;
Theis, Fabian J. ;
Marr, Carsten .
NATURE METHODS, 2017, 14 (04) :403-+
[9]   Deep Learning in Label-free Cell Classification [J].
Chen, Claire Lifan ;
Mahjoubfar, Ata ;
Tai, Li-Chia ;
Blaby, Ian K. ;
Huang, Allen ;
Niazi, Kayvan Reza ;
Jalali, Bahram .
SCIENTIFIC REPORTS, 2016, 6
[10]   CD27 expression and its association with clinical outcome in children and adults with pro-B acute lymphoblastic leukemia [J].
Chen, D. ;
Gerasimcik, N. ;
Camponeschi, A. ;
Tan, Y. ;
Wu, Q. ;
Brynjolfsson, S. ;
Zheng, J. ;
Abrahamsson, J. ;
Nordlund, J. ;
Lonnerholm, G. ;
Fogelstrand, L. ;
Mortensson, I-L .
BLOOD CANCER JOURNAL, 2017, 7 :e575-e575