OBSERVABLES OF MACDONALD PROCESSES

被引:23
作者
Borodin, Alexei [1 ,2 ]
Corwin, Ivan [3 ,4 ,5 ]
Gorin, Vadim [1 ,2 ]
Shakirov, Shamil [6 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[3] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
[4] Clay Math Inst, 10 Mem Blvd,Suite 902, Providence, RI 02903 USA
[5] Inst Poincare, 11 Rue Pierre & Marie Curie, F-75005 Paris, France
[6] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
FREE-ENERGY FLUCTUATIONS; DIRECTED POLYMERS; TRANSFORMATIONS; POLYNOMIALS; PARTITIONS; BOUNDARY;
D O I
10.1090/tran/6359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a framework for computing averages of various observables of Macdonald processes. This leads to new contour-integral formulas for averages of a large class of multilevel observables, as well as Fredholm determinants for averages of two different single level observables.
引用
收藏
页码:1517 / 1558
页数:42
相关论文
共 46 条
[41]   One-Dimensional Kardar-Parisi-Zhang Equation: An Exact Solution and its Universality [J].
Sasamoto, Tomohiro ;
Spohn, Herbert .
PHYSICAL REVIEW LETTERS, 2010, 104 (23)
[42]   SCALING FOR A ONE-DIMENSIONAL DIRECTED POLYMER WITH BOUNDARY CONDITIONS [J].
Seppaelaeinen, Timo .
ANNALS OF PROBABILITY, 2012, 40 (01) :19-73
[43]   A family of integral transformations and basic hypergeometric series [J].
Shiraishi, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 263 (02) :439-460
[44]  
Vuletic M, 2009, T AM MATH SOC, V361, P2789
[45]   Bisymmetric functions, Macdonald polynomials and Sl3 basic hypergeometric series [J].
Warnaar, S. Ole .
COMPOSITIO MATHEMATICA, 2008, 144 (02) :271-303
[46]  
Zelevinsky A. V., 1981, LECT NOTES MATH, V869