Solutions of vanishing curvature non-Abelian monopole equations

被引:2
作者
Legaré, M [1 ]
机构
[1] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2002年 / 17卷 / 18期
关键词
non-Abelian monopoles; solutions; dimensional reduction; o.d.e.'s;
D O I
10.1142/S0217751X02009989
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Reduced non-Abelian monopole equations are derived for a set of dimensional reductions, with cases involving supplementary algebraic conditions. (Local) solutions to certain reduced ordinary differential equations of the flat four-dimensional non-Abelian monopole equations are discussed.
引用
收藏
页码:2501 / 2512
页数:12
相关论文
共 41 条
[21]  
KAMKE E, 1967, DIFFERENTIALGLEICHUN
[22]   A TOPOLOGICAL LAGRANGIAN FOR MONOPOLES ON 4-MANIFOLDS [J].
LABASTIDA, JMF ;
MARINO, M .
PHYSICS LETTERS B, 1995, 351 (1-3) :146-152
[23]   NON-ABELIAN MONOPOLES ON 4-MANIFOLDS [J].
LABASTIDA, JMF ;
MARINO, M .
NUCLEAR PHYSICS B, 1995, 448 (1-2) :373-395
[24]  
LACHAPELLE J, 2000, J PHYS A, V33, P3843
[25]  
Lawson HB, 1989, Spin Geometry
[26]  
MARCOLLI M, MATHDG9509005
[27]  
MARINO M, HEPTH9701128
[28]  
Morgan J.W., 1996, MATH NOTES+, V44
[29]   Liouville vortex and phi(4) kink solutions of the Seiberg-Witten equations [J].
Nergiz, S ;
Saclioglu, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (08) :3753-3759
[30]   Quaternionic monopoles [J].
Okonek, C ;
Teleman, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (02) :363-388