Solutions of vanishing curvature non-Abelian monopole equations

被引:2
作者
Legaré, M [1 ]
机构
[1] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2002年 / 17卷 / 18期
关键词
non-Abelian monopoles; solutions; dimensional reduction; o.d.e.'s;
D O I
10.1142/S0217751X02009989
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Reduced non-Abelian monopole equations are derived for a set of dimensional reductions, with cases involving supplementary algebraic conditions. (Local) solutions to certain reduced ordinary differential equations of the flat four-dimensional non-Abelian monopole equations are discussed.
引用
收藏
页码:2501 / 2512
页数:12
相关论文
共 41 条
  • [1] Ablowitz M A., 1991, Solitons, nonlinear evolution equations and inverse scattering, DOI [10.1017/CBO9780511623998, DOI 10.1017/CBO9780511623998]
  • [2] NON-LINEAR EVOLUTION EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF PAINLEVE TYPE
    ABLOWITZ, MJ
    RAMANI, A
    SEGUR, H
    [J]. LETTERE AL NUOVO CIMENTO, 1978, 23 (09): : 333 - 338
  • [3] A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .2.
    ABLOWITZ, MJ
    RAMANI, A
    SEGUR, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (05) : 1006 - 1015
  • [4] A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1.
    ABLOWITZ, MJ
    RAMANI, A
    SEGUR, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) : 715 - 721
  • [5] Non-L2 solutions to the Seiberg-Witten equations
    Adam, C
    Muratori, B
    Nash, C
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (09) : 5875 - 5882
  • [6] Baulieu L, 1999, J HIGH ENERGY PHYS
  • [7] BILAL A, HEPTH9601007
  • [8] TOPOLOGICAL FIELD-THEORY
    BIRMINGHAM, D
    BLAU, M
    RAKOWSKI, M
    THOMPSON, G
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1991, 209 (4-5): : 129 - 340
  • [9] Bluman G. W., 1989, Symmetries and Differential Equations
  • [10] BRADLOW S, AG9602010