Artificial Intelligence-Electrocardiography to Predict Incident Atrial Fibrillation A Population-Based Study

被引:83
作者
Christopoulos, Georgios [1 ]
Graff-Radford, Jonathan [2 ]
Lopez, Camden L. [3 ]
Yao, Xiaoxi [1 ,3 ,4 ]
Attia, Zachi, I [1 ]
Rabinstein, Alejandro A. [2 ]
Petersen, Ronald C. [2 ,3 ]
Knopman, David S. [2 ]
Mielke, Michelle M. [2 ,3 ]
Kremers, Walter [2 ,3 ]
Vemuri, Prashanthi [2 ]
Siontis, Konstantinos C. [1 ]
Friedman, Paul A. [1 ]
Noseworthy, Peter A. [1 ]
机构
[1] Mayo Clin, Dept Cardiovasc Med, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Neurol, Rochester, MN 55905 USA
[3] Mayo Clin, Dept Hlth Sci Res, Rochester, MN 55905 USA
[4] Mayo Clin, Robert D & Patricia E Kern Ctr Sci Hlth Care Deli, Rochester, MN 55905 USA
基金
美国国家卫生研究院;
关键词
artificial intelligence; atrial fibrillation; electrocardiography; hazard ratio; incidence; RISK SCORE; STROKE;
D O I
10.1161/CIRCEP.120.009355
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: An artificial intelligence (AI) algorithm applied to electrocardiography during sinus rhythm has recently been shown to detect concurrent episodic atrial fibrillation (AF). We sought to characterize the value of AI-enabled electrocardiography (AI-ECG) as a predictor of future AF and assess its performance compared with the CHARGE-AF score (Cohorts for Aging and Research in Genomic Epidemiology-AF) in a population-based sample. Methods: We calculated the probability of AF using AI-ECG, among participants in the population-based Mayo Clinic Study of Aging who had no history of AF at the time of the baseline study visit. Cox proportional hazards models were fit to assess the independent prognostic value and interaction between AI-ECG AF model output and CHARGE-AF score. C statistics were calculated for AI-ECG AF model output, CHARGE-AF score, and combined AI-ECG and CHARGE-AF score. Results: A total of 1936 participants with median age 75.8 (interquartile range, 70.4-81.8) years and median CHARGE-AF score 14.0 (IQR, 13.2-14.7) were included in the analysis. Participants with AI-ECG AF model output of >0.5 at the baseline visit had cumulative incidence of AF 21.5% at 2 years and 52.2% at 10 years. When included in the same model, both AI-ECG AF model output (hazard ratio, 1.76 per SD after logit transformation [95% CI, 1.51-2.04]) and CHARGE-AF score (hazard ratio, 1.90 per SD [95% CI, 1.58-2.28]) independently predicted future AF without significant interaction (P=0.54). C statistics were 0.69 (95% CI, 0.66-0.72) for AI-ECG AF model output, 0.69 (95% CI, 0.66-0.71) for CHARGE-AF, and 0.72 (95% CI, 0.69-0.75) for combined AI-ECG and CHARGE-AF score. Conclusions: In the present study, both the AI-ECG AF model output and CHARGE-AF score independently predicted incident AF. The AI-ECG may offer a means to assess risk with a single test and without requiring manual or automated clinical data abstraction.
引用
收藏
页数:8
相关论文
共 17 条
[1]   Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE-AF Consortium [J].
Alonso, Alvaro ;
Krijthe, Bouwe P. ;
Aspelund, Thor ;
Stepas, Katherine A. ;
Pencina, Michael J. ;
Moser, Carlee B. ;
Sinner, Moritz F. ;
Sotoodehnia, Nona ;
Fontes, Joao D. ;
Janssens, A. Cecile J. W. ;
Kronmal, Richard A. ;
Magnani, Jared W. ;
Witteman, Jacqueline C. ;
Chamberlain, Alanna M. ;
Lubitz, Steven A. ;
Schnabel, Renate B. ;
Agarwal, Sunil K. ;
McManus, David D. ;
Ellinor, Patrick T. ;
Larson, Martin G. ;
Burke, Gregory L. ;
Launer, Lenore J. ;
Hofman, Albert ;
Levy, Daniel ;
Gottdiener, John S. ;
Kaeaeb, Stefan ;
Couper, David ;
Harris, Tamara B. ;
Soliman, Elsayed Z. ;
Stricker, Bruno H. C. ;
Gudnason, Vilmundur ;
Heckbert, Susan R. ;
Benjamin, Emelia J. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2013, 2 (02) :e000102
[2]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[3]  
Bidstrup Signe, 2013, J Atr Fibrillation, V6, P956, DOI 10.4022/jafib.956
[4]   A Clinical Risk Score for Atrial Fibrillation in a Biracial Prospective Cohort (from the Atherosclerosis Risk In Communities [ARIC] Study) [J].
Chamberlain, Alanna M. ;
Agarwal, Sunil K. ;
Folsom, Aaron R. ;
Soliman, Elsayed Z. ;
Chambless, Lloyd E. ;
Crow, Richard ;
Ambrose, Marietta ;
Alonso, Alvaro .
AMERICAN JOURNAL OF CARDIOLOGY, 2011, 107 (01) :85-91
[5]   A comparison of the CHARGE-AF and the CHA2DS2-VASc risk scores for prediction of atrial fibrillation in the Framingham Heart Study [J].
Christophersen, Ingrid E. ;
Yin, Xiaoyan ;
Larson, Martin G. ;
Lubitz, Steven A. ;
Magnani, Jared W. ;
McManus, David D. ;
Ellinor, Patrick T. ;
Benjamin, Emelia J. .
AMERICAN HEART JOURNAL, 2016, 178 :45-54
[6]   Atrial Fibrillation Predictors: Importance of the Electrocardiogram [J].
German, David M. ;
Kabir, Muammar M. ;
Dewland, Thomas A. ;
Henrikson, Charles A. ;
Tereshchenko, Larisa G. .
ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, 2016, 21 (01) :20-29
[7]   Atrial Fibrillation in Patients with Cryptogenic Stroke [J].
Gladstone, David J. ;
Spring, Melanie ;
Dorian, Paul ;
Panzov, Val ;
Thorpe, Kevin E. ;
Hall, Judith ;
Vaid, Haris ;
O'Donnell, Martin ;
Laupacis, Andreas ;
Cote, Robert ;
Sharma, Mukul ;
Blakely, John A. ;
Shuaib, Ashfaq ;
Hachinski, Vladimir ;
Coutts, Shelagh B. ;
Sahlas, Demetrios J. ;
Teal, Phil ;
Yip, Samuel ;
Spence, J. David ;
Buck, Brian ;
Verreault, Steve ;
Casaubon, Leanne K. ;
Penn, Andrew ;
Selchen, Daniel ;
Jin, Albert ;
Howse, David ;
Mehdiratta, Manu ;
Boyle, Karl ;
Aviv, Richard ;
Kapral, Moira K. ;
Mamdani, Muhammad .
NEW ENGLAND JOURNAL OF MEDICINE, 2014, 370 (26) :2467-2477
[8]   Age, Gene/Environment Susceptibility-Reykjavik Study: Multidisciplinary applied phenomics [J].
Harris, Tamara B. ;
Launer, Lenore J. ;
Eiriksdottir, Gudny ;
Kjartansson, Olafur ;
Jonsson, Palmi V. ;
Sigurdsson, Gunnar ;
Thorgeirsson, Gudmundur ;
Aspelund, Thor ;
Garcia, Melissa E. ;
Cotch, Mary Frances ;
Hoffman, Howard J. ;
Gudnason, Vilmundur .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2007, 165 (09) :1076-1087
[9]   The Rotterdam Study: 2010 objectives and design update [J].
Hofman, Albert ;
Breteler, Monique M. B. ;
Duijn, Cornelia M. van ;
Janssen, Harry L. A. ;
Krestin, Gabriel P. ;
Kuipers, Ernst J. ;
Stricker, Bruno H. Ch. ;
Tiemeier, Henning ;
Uitterlinden, Andre G. ;
Vingerling, Johannes R. ;
Witteman, Jacqueline C. M. .
EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2009, 24 (09) :553-572
[10]   Refining Clinical Risk Stratification for Predicting Stroke and Thromboembolism in Atrial Fibrillation Using a Novel Risk Factor-Based Approach The Euro Heart Survey on Atrial Fibrillation [J].
Lip, Gregory Y. H. ;
Nieuwlaat, Robby ;
Pisters, Ron ;
Lane, Deirdre A. ;
Crijns, Harry J. G. M. .
CHEST, 2010, 137 (02) :263-272