Direct formic acid microfluidic fuel cell design and performance evolution

被引:39
作者
Moreno-Zuria, A. [1 ]
Dector, A. [1 ]
Cuevas-Muniz, F. M. [1 ]
Esquivel, J. P. [2 ]
Sabate, N. [2 ]
Ledesma-Garcia, J. [3 ]
Arriaga, L. G. [1 ]
Chavez-Ramirez, A. U. [1 ]
机构
[1] Ctr Invest & Desarrollo Tecnol Electroquim, Queretaro 76703, Mexico
[2] IMB CNM CSIC, Inst Microelect Barcelona, Barcelona 08193, Spain
[3] Univ Autonoma Queretaro, Fac Ingn, Div Invest & Posgrad, Queretaro 76010, Mexico
关键词
Microfluidic fuel cell evolution; Formic acid; SU-8; photoresist; Air-breathing technology; High performance; FABRICATION; CATALYST; ARRAY;
D O I
10.1016/j.jpowsour.2014.07.049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work reports the evolution of design, fabrication and testing of direct formic acid microfluidic fuel cells (DFA mu FFC), the architecture and channel dimensions are miniaturized from a thousand to few cents of micrometers. Three generations of DFA mu FFCs are presented, from the initial Y-shape configuration made by a hot pressing technique; evolving into a novel miniaturized fuel cell based on microfabrication technology using SU-8 photoresist as core material; to the last air-breathing mu FFC with enhanced performance and built with low cost materials and processes. The three devices were evaluated in acidic media in the presence of formic acid as fuel and oxygen/air as oxidant. Commercial Pt/C (30 wt. % E-TEK) and Pd/C XC-72 (20 wt. %, E-TEK) were used as cathode and anode electrodes respectively. The air-breathing mu FFC generation, delivered up to 27.3 mW cm(-2) for at least 30 min, which is a competitive power density value at the lowest fuel flow of 200 mu L min(-1) reported to date. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:783 / 788
页数:6
相关论文
共 35 条
[1]   Investigation of fuel and media flexible laminar low-based fuel cells [J].
Brushett, Fikile R. ;
Jayashree, Ranga S. ;
Zhou, Wei-Ping ;
Kenis, Paul J. A. .
ELECTROCHIMICA ACTA, 2009, 54 (27) :7099-7105
[2]   Microfluidic fuel cell based on laminar flow [J].
Choban, ER ;
Markoski, LJ ;
Wieckowski, A ;
Kenis, PJA .
JOURNAL OF POWER SOURCES, 2004, 128 (01) :54-60
[3]   Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media [J].
Choban, ER ;
Spendelow, JS ;
Gancs, L ;
Wieckowski, A ;
Kenis, PJA .
ELECTROCHIMICA ACTA, 2005, 50 (27) :5390-5398
[4]   Fabrication and preliminary testing of a planar membraneless microchannel fuel cell [J].
Cohen, JL ;
Westly, DA ;
Pechenik, A ;
Abruña, HD .
JOURNAL OF POWER SOURCES, 2005, 139 (1-2) :96-105
[5]   Formic acid microfluidic fuel cell evaluation in different oxidant conditions [J].
Dector, A. ;
Esquivel, J. P. ;
Gonzalez, M. J. ;
Guerra-Balcazar, M. ;
Ledesma-Garcia, J. ;
Sabate, N. ;
Arriaga, L. G. .
ELECTROCHIMICA ACTA, 2013, 92 :31-35
[6]   Fuel cells for portable applications [J].
Dyer, CK .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :31-34
[7]   Towards a compact SU-8 micro-direct methanol fuel cell [J].
Esquivel, J. P. ;
Senn, T. ;
Hernandez-Fernandez, P. ;
Santander, J. ;
Loergen, M. ;
Rojas, S. ;
Loechel, B. ;
Cane, C. ;
Sabate, N. .
JOURNAL OF POWER SOURCES, 2010, 195 (24) :8110-8115
[8]   Carbon supported ruthenium chalcogenide as cathode catalyst in a microfluidic formic acid fuel cell [J].
Gago, A. S. ;
Morales-Acosta, D. ;
Arriaga, L. G. ;
Alonso-Vante, N. .
JOURNAL OF POWER SOURCES, 2011, 196 (03) :1324-1328
[9]   Co-laminar flow cells for electrochemical energy conversion [J].
Goulet, Marc-Antoni ;
Kjeang, Erik .
JOURNAL OF POWER SOURCES, 2014, 260 :186-196
[10]  
Hecker K., 2011, ORGANIC PRINTED ELEC