ESTIMATING TIME-CHANGES IN NOISY LEVY MODELS

被引:6
作者
Bull, Adam D. [1 ]
机构
[1] Univ Cambridge, Stat Lab, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会;
关键词
Ito semimartingale; Levy process; microstructure noise; volatility; time-change; HIGH-FREQUENCY DATA; NONPARAMETRIC-ESTIMATION; INTEGRATED VOLATILITY; MICROSTRUCTURE NOISE; DIFFUSION-COEFFICIENT; EFFICIENT ESTIMATION; JUMPS; INFERENCE;
D O I
10.1214/14-AOS1250
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In quantitative finance, we often model asset prices as a noisy Ito semimartingale. As this model is not identifiable, approximating by a time-changed Levy process can be useful for generative modelling. We give a new estimate of the normalised volatility or time change in this model, which obtains minimax convergence rates, and is unaffected by infinite-variation jumps. In the semimartingale model, our estimate remains accurate for the normalised volatility, obtaining convergence rates as good as any previously implied in the literature.
引用
收藏
页码:2026 / 2057
页数:32
相关论文
共 42 条
[1]   ESTIMATING THE DEGREE OF ACTIVITY OF JUMPS IN HIGH FREQUENCY DATA [J].
Ait-Sahalia, Yacine ;
Jacod, Jean .
ANNALS OF STATISTICS, 2009, 37 (5A) :2202-2244
[2]  
Andersen T. G., 2000, Risk, V13, P105
[3]   Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise [J].
Barndorff-Nielsen, Ole E. ;
Hansen, Peter Reinhard ;
Lunde, Asger ;
Shephard, Neil .
ECONOMETRICA, 2008, 76 (06) :1481-1536
[4]  
BarndorffNielsen O. E., 2004, Journal of Financial Econometrics, V2, P1, DOI DOI 10.1093/JJFINEC/NBH001
[5]   Estimation of the activity of jumps in time-changed Levy models [J].
Belomestny, Denis ;
Panov, Vladimir .
ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 :2970-3003
[7]  
BULL A. D., 2014, ESTIMATING TIME CH S, DOI [10.1214/14-AOS1250SUPP, DOI 10.1214/14-AOS1250SUPP]
[8]   Time-changed Levy processes and option pricing [J].
Carr, P ;
Wu, LR .
JOURNAL OF FINANCIAL ECONOMICS, 2004, 71 (01) :113-141
[9]  
Cont R., 2004, Chapman & Hall/CRC Financial Mathematics Series
[10]   A GENERAL VERSION OF THE FUNDAMENTAL THEOREM OF ASSET PRICING [J].
DELBAEN, F ;
SCHACHERMAYER, W .
MATHEMATISCHE ANNALEN, 1994, 300 (03) :463-520