Drazin inversion in the von Neumann algebra generated by two orthogonal projections

被引:13
作者
Boettcher, A. [1 ]
Spitkovsky, I. M. [2 ]
机构
[1] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
Drazin inverse; Moore-Penrose inverse; Orthogonal projection; von Neumann algebra;
D O I
10.1016/j.jmaa.2009.05.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Criteria for Drazin and Moore-Penrose invertibility of operators in the von Neumann algebra generated by two orthogonal projections are established and explicit representations for the corresponding inverses are given. The results are illustrated by several examples that have recently been considered in the literature. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:403 / 409
页数:7
相关论文
共 8 条
  • [1] [Anonymous], 1950, Functional Operators, Vol. 2: The Geometry of Orthogonal Spaces
  • [2] The Drazin inverses of sum and difference of idempotents
    Deng, Chun Yuan
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) : 1282 - 1291
  • [3] Dixmier J., 1948, REV SCI, V86, P387
  • [4] MATRIX REPRESENTATION OF A PAIR OF PROJECTIONS IN A HILBERT SPACE
    GILES, R
    KUMMER, H
    [J]. CANADIAN MATHEMATICAL BULLETIN, 1971, 14 (01): : 35 - &
  • [5] HALMOS P, 1968, T AM MATH SOC, V19, P381
  • [6] Some additive results on Drazin inverse
    Hartwig, RE
    Wang, GR
    Wei, YM
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 322 (1-3) : 207 - 217
  • [7] SPITKOVSKY I, 1994, LINEAR ALGEBRA APPL, V208, P377
  • [8] Spitkovsky IM, 2006, ELECTRON J LINEAR AL, V15, P154