A New Ion Mobility-Linear Ion Trap Instrument for Complex Mixture Analysis

被引:33
作者
Donohoe, Gregory C. [1 ]
Maleki, Hossein [1 ]
Arndt, James R. [1 ]
Khakinejad, Mahdiar [1 ]
Yi, Jinghai [2 ]
McBride, Carroll [2 ]
Nurkiewicz, Timothy R. [2 ]
Valentine, Stephen J. [1 ]
机构
[1] W Virginia Univ, C Eugene Bennett Dept Chem, Morgantown, WV 26506 USA
[2] W Virginia Univ, Sch Med, Ctr Cardiovasc & Resp Sci, Morgantown, WV 26506 USA
关键词
FIELD DRIFT-TUBE; MASS-SPECTROMETRY; HIGH-RESOLUTION; GAS-PHASE; IMS-IMS; SEQUENCE-ANALYSIS; PLASMA PROTEOME; PEPTIDES; SEPARATION; TIME;
D O I
10.1021/ac501527y
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A new instrument that couples a low-pressure drift tube with a linear ion trap mass spectrometer is demonstrated for complex mixture analysis. The combination of the low-pressure separation with the ion trapping capabilities provides several benefits for complex mixture analysis. These include high sensitivity, unique ion fragmentation capabilities, and high reproducibility. Even though the gas-phase separation and the mass measurement steps are each conducted in an ion filtering mode, detection limits for mobility-selected peptide ions are in the tens of attomole range. In addition to ion separation, the low-pressure drift tube can be used as an ion fragmentation cell yielding mobility-resolved fragment ions that can be subsequently analyzed by multistage tandem mass spectrometry (MSn) methods in the ion trap. Because of the ion trap configuration, these methods can be comprised of any number (limited by ion signal) of collision-induced dissociation (CID) and electron transfer dissociation (ETD) processes. The high reproducibility of the gas-phase separation allows for comparison of two-dimensional ion mobility spectrometry (IMS)-MS data sets in a pixel-by-pixel fashion without the need for data set alignment These advantages are presented in model analyses representing mixtures encountered in proteomics and metabolomics experiments.
引用
收藏
页码:8121 / 8128
页数:8
相关论文
共 71 条
[1]  
[Anonymous], 2014, WATERS
[2]   Ion mobility spectrometry-mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures [J].
Baker, Erin Shammel ;
Clowers, Brian H. ;
Li, Fumin ;
Tang, Keqi ;
Tolmachev, Aleksey V. ;
Prior, David C. ;
Belov, Mikhail E. ;
Smith, Richard D. .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2007, 18 (07) :1176-1187
[3]   LC-MS analysis of phospholipids and lysophospholipids in human bronchoalveolar lavage fluid [J].
Barroso, B ;
Bischoff, R .
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2005, 814 (01) :21-28
[4]   Large-scale characterization of HeLa cell nuclear phosphoproteins [J].
Beausoleil, SA ;
Jedrychowski, M ;
Schwartz, D ;
Elias, JE ;
Villén, J ;
Li, JX ;
Cohn, MA ;
Cantley, LC ;
Gygi, SP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (33) :12130-12135
[5]  
Becker C, 2009, SPECTROSCOPY-US, V24, P38
[6]   Increased ion transmission in IMS: A high resolution, periodic-focusing DC ion guide ion mobility spectrometer [J].
Blase, Ryan C. ;
Silveira, Joshua A. ;
Gillig, Kent J. ;
Gamage, Chaminda M. ;
Russell, David H. .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2011, 301 (1-3) :166-173
[7]   Development of a Fourier-transform ion cyclotron resonance mass spectrometer-ion mobility spectrometer [J].
Bluhm, BK ;
Gillig, KJ ;
Russell, DH .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (11) :4078-4086
[8]   Biomolecule Analysis by Ion Mobility Spectrometry [J].
Bohrer, Brian C. ;
Mererbloom, Samuel I. ;
Koeniger, Stormy L. ;
Hilderbrand, Amy E. ;
Clemmer, David E. .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2008, 1 (01) :293-327
[9]   Computational Analyses of Spectral Trees from Electrospray Multi-Stage Mass Spectrometry to Aid Metabolite Identification [J].
Cao, Mingshu ;
Fraser, Karl ;
Rasmussen, Susanne .
METABOLITES, 2013, 3 (04) :1036-1050
[10]  
Clemmer DE, 1997, J MASS SPECTROM, V32, P577