Quantum Riemann surfaces in Chern-Simons theory

被引:63
作者
Dimofte, Tudor [1 ,2 ,3 ]
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
[2] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
[3] Max Planck Inst Math, D-53111 Bonn, Germany
基金
美国国家科学基金会;
关键词
LIOUVILLE THEORY; VOLUME CONJECTURE; FIELD-THEORY; QUANTIZATION; INVARIANTS; GRAVITY; CURVES; REPRESENTATIONS; POLYNOMIALS; DILOGARITHM;
D O I
10.4310/ATMP.2013.v17.n3.a1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct from first principles the operators (A) over cap (M) that annihilate the partition functions (or waveffinctions) of three-dimensional Chern-Simons theory with gauge groups SU(2), SL(2,R), or SL(2, C) on knot complements M. The operator (A) over cap (M) is a quantization of a knot complement's classical A-polynomial A(M) (l, m). The construction proceeds by decomposing three-manifolds into ideal tetrahedra, and invoking a new, more global understanding of gluing in topological quantum field theory to put them back together. We advocate in particular that, properly interpreted, "gluing = symplectic reduction." We also arrive at a new finite-dimensional state integral model for computing the analytically continued "holomorphic blocks" that compose any physical Chern-Simons partition function.
引用
收藏
页码:479 / 599
页数:121
相关论文
共 91 条
[21]  
Culler M., A-polynomials
[22]   The volume conjecture and topological strings [J].
Dijkgraaf, Robbert ;
Fuji, Hiroyuki .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2009, 57 (09) :825-856
[23]  
Dimofte T., QUANTUM FIELD THEORY
[24]   Chern-Simons theory and S-duality [J].
Dimofte, Tudor ;
Gukov, Sergei .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (05)
[25]  
Dimofte T, 2009, COMMUN NUMBER THEORY, V3, P363
[26]  
Dunfield N.M., 2004, ALGEBR GEOM TOPOL, V4, P1145, DOI 10.2140/agt.2004.4.1145
[27]   Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds [J].
Dunfield, NM .
INVENTIONES MATHEMATICAE, 1999, 136 (03) :623-657
[28]   REMARKS ON THE CANONICAL QUANTIZATION OF THE CHERN-SIMONS-WITTEN THEORY [J].
ELITZUR, S ;
MOORE, G ;
SCHWIMMER, A ;
SEIBERG, N .
NUCLEAR PHYSICS B, 1989, 326 (01) :108-134
[29]  
Eynard B, 2007, COMMUN NUMBER THEORY, V1, P347
[30]   ABELIAN CURRENT-ALGEBRA AND THE VIRASORO ALGEBRA ON THE LATTICE [J].
FADDEEV, L ;
VOLKOV, AY .
PHYSICS LETTERS B, 1993, 315 (3-4) :311-318