Space-Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery

被引:490
作者
Haruyama, Jun [1 ,2 ]
Sodeyama, Keitaro [1 ,3 ]
Han, Liyuan [4 ]
Takada, Kazunori [1 ,2 ]
Tateyama, Yoshitaka [1 ,3 ,5 ,6 ]
机构
[1] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton MANA, Tsukuba, Ibaraki 3050044, Japan
[2] Natl Inst Mat Sci, Global Res Ctr Environm & Energy Nanosci GREEN, Tsukuba, Ibaraki 3050044, Japan
[3] Kyoto Univ, Elements Strategy Initiat Catalysts & Batteries, Nishikyo Ku, Kyoto 6158245, Japan
[4] Natl Inst Mat Sci, Photovolta Mat Unit, Tsukuba, Ibaraki 3050047, Japan
[5] Japan Sci & Technol Agcy JST, PRESTO, Kawaguchi, Saitama 3330012, Japan
[6] Japan Sci & Technol Agcy JST, CREST, Kawaguchi, Saitama 3330012, Japan
关键词
CRYSTAL-STRUCTURE; LICOO2; ELECTRODE; CONDUCTION; PSEUDOPOTENTIALS; 1ST-PRINCIPLES; ENHANCEMENT;
D O I
10.1021/cm5016959
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We theoretically elucidated the characteristics of the space-charge layer (SCL) at interfaces between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion batteries (ASS-LIBs) and the effect of the buffer layer interposition, for the first time, via the calculations with density functional theory (DFT) + U framework. As a most representative system, we examined the interfaces between LiCoO2 cathode and beta-Li3PS4 solid electrolyte (LCO/LPS), and the LiCoO2/LiNbO3/beta-Li3PS4 (LCO/LNO/LPS) interfaces with the LiNbO3 buffer layers. The DFT+U calculations, coupling with a systematic procedure for interface matching, showed the stable structures and the electronic states of the interfaces. The LCO/LPS interface has attractive Li adsorption sites and rather disordered structure, whereas the interposition of the LNO buffer layers forms smooth interfaces without Li adsorption sites for both LCO and LPS sides. The calculated energies of the Li-vacancy formation and the Li migration reveal that subsurface Li in the LPS side can begin to transfer at the under-voltage condition in the LCO/LPS interface, which suggests the SCL growth at the beginning of charging, leading to the interfacial resistance. The LNO interposition suppresses this growth of SCL and provides smooth Li transport paths free from the possible bottlenecks. These aspects on the atomic scale will give a useful perspective for the further improvement of the ASS-LIB performance.
引用
收藏
页码:4248 / 4255
页数:8
相关论文
共 55 条
  • [51] Nanoscale Interface Modification of LiCoO2 by Al2O3 Atomic Layer Deposition for Solid-State Li Batteries
    Woo, Jae Ha
    Trevey, James E.
    Cavanagh, Andrew S.
    Choi, Yong Seok
    Kim, Seul Cham
    George, Steven M.
    Oh, Kyu Hwan
    Lee, Se-Hee
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (07) : A1120 - A1124
  • [52] Structure and diffusion of intrinsic defect complexes in LiNbO3 from density functional theory calculations
    Xu, Haixuan
    Lee, Donghwa
    Sinnott, Susan B.
    Dierolf, Volkmar
    Gopalan, Venkatraman
    Phillpot, Simon R.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (13)
  • [53] Xu M., 2011, APPL PHYS LETT, V24, P15
  • [54] Local Structure and Ionic Conduction at Interfaces of Electrode and Solid Electrolytes
    Yamada, Hirotsohi
    Oga, Yusuke
    Saruwatari, Isamu
    Moriguchi, Isamu
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (04) : A380 - A385
  • [55] Crystal structure of a superionic conductor, Li7P3S11
    Yamane, Hisanori
    Shibata, Masatoshi
    Shimane, Yukio
    Junke, Tadanori
    Seino, Yoshikatsu
    Adams, Stefan
    Minami, Keilchi
    Hayashi, Akitoshi
    Tatsumisago, Masahiro
    [J]. SOLID STATE IONICS, 2007, 178 (15-18) : 1163 - 1167