STOCHASTIC COLLOCATION METHODS VIA l1 MINIMIZATION USING RANDOMIZED QUADRATURES

被引:16
作者
Guo, Ling [1 ]
Narayan, Akil [2 ]
Zhou, Tao [3 ]
Chen, Yuhang [4 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Univ Utah, Sci Comp & Imaging SCI Inst, Dept Math, Salt Lake City, UT 84112 USA
[3] Chinese Acad Sci, AMSS, Inst Comptutat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[4] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
基金
中国国家自然科学基金;
关键词
compressive sensing; l(1) minimization; polynomial chaos expansions; uncertainty quantification; PARTIAL-DIFFERENTIAL-EQUATIONS; POLYNOMIAL CHAOS; ORTHOGONAL POLYNOMIALS; CHRISTOFFEL FUNCTIONS; SIGNAL RECOVERY; CONVERGENCE; WEIGHTS; APPROXIMATIONS; EXPANSIONS; ALGORITHMS;
D O I
10.1137/16M1059680
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the problem of approximating a multivariate function by a polynomial constructed via an l(1) minimization method using a randomly chosen subgrid of the corresponding tensor grid of Gaussian quadrature points. The input variables of the function are assumed to be independent random variables and thus the framework provides a nonintrusive way to construct the sparse polynomial chaos expansions, stemming from the motivating application of uncertainty quantification. We provide a theoretical analysis on the validity of the approach. The framework includes both the bounded measures, such as the uniform and the Chebyshev measures, and the unbounded measures which include the Gaussian measure. Several numerical examples are given to confirm the theoretical results.
引用
收藏
页码:A333 / A359
页数:27
相关论文
共 50 条
[31]   A DUAL SPLIT BREGMAN METHOD FOR FAST l1 MINIMIZATION [J].
Yang, Yi ;
Moeller, Michael ;
Osher, Stanley .
MATHEMATICS OF COMPUTATION, 2013, 82 (284) :2061-2085
[32]   Two-level l1 minimization for compressed sensing [J].
Huang, Xiaolin ;
Liu, Yipeng ;
Shi, Lei ;
Van Huffel, Sabine ;
Suykens, Johan A. K. .
SIGNAL PROCESSING, 2015, 108 :459-475
[33]   Microstructure-Sensitive Uncertainty Quantification for Crystal Plasticity Finite Element Constitutive Models Using Stochastic Collocation Methods [J].
Tran, Anh ;
Wildey, Tim ;
Lim, Hojun .
FRONTIERS IN MATERIALS, 2022, 9
[34]   RIP Analysis for l1/lp (p > 1) Minimization Method [J].
Xie, Yujia ;
Su, Xinhua ;
Ge, Huanmin .
IEEE SIGNAL PROCESSING LETTERS, 2023, 30 :997-1001
[35]   L1 Scheme for Semilinear Stochastic Subdiffusion with Integrated Fractional Gaussian Noise [J].
Wu, Xiaolei ;
Yan, Yubin .
FRACTAL AND FRACTIONAL, 2025, 9 (03)
[36]   Class-specific adaptive sparse representation via reweighted l1 norm minimization for image classification [J].
Shi, Zhongrong ;
Liu, Chuancai .
JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (04)
[37]   Sparse Representation Classification Beyond l1 Minimization and the Subspace Assumption [J].
Shen, Cencheng ;
Chen, Li ;
Dong, Yuexiao ;
Priebe, Carey E. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (08) :5061-5071
[38]   Non-manifold curve reconstruction based on l1 minimization [J].
Luo, P. (areslp@cse.buaa.edu.cn), 1917, Science Press (36) :1917-1928
[39]   SUBSPACE CORRECTION METHODS FOR TOTAL VARIATION AND l1-MINIMIZATION [J].
Fornasier, Massimo ;
Schoenlieb, Carola-Bibiane .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) :3397-3428
[40]   On first-order algorithms for l1/nuclear norm minimization [J].
Nesterov, Yurii ;
Nemirovski, Arkadi .
ACTA NUMERICA, 2013, 22 :509-575