Performance of Topological Insulator Interconnects

被引:14
作者
Philip, Timothy M. [1 ]
Hirsbrunner, Mark R. [1 ,2 ]
Park, Moon Jip [2 ]
Gilbert, Matthew J. [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61802 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61802 USA
基金
美国国家科学基金会;
关键词
Topological insulators; interconnects; non-equilibrium green functions (NEGF); SINGLE DIRAC CONE; GRAPHENE; DIFFUSION; BI2SE3; SILICON; LOCALIZATION; MOBILITY; SURFACE; COPPER; FILMS;
D O I
10.1109/LED.2016.2629760
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The poor performance of copper interconnects at the nanometer scale calls for new material solutions for continued scaling of integrated circuits. We propose the use of 3-D time-reversal-invariant topological insulators (TIs), which host backscattering-protected surface states, for this purpose. Using semiclassical methods, we demonstrate that nanoscale TI interconnects have a resistance 1-3 orders of magnitude lower than copper interconnects and graphene nanoribbons at the nanometer scale. We use the nonequilibrium Green function formalism to measure the change in conductance of nanoscale TI and metal interconnects caused by the presence of impurity disorder. We show that metal interconnects suffer a resistance increase, relative to the clean limit, in excess of 500% due to disorder, while the TI's surface states increase less than 35% in the same regime.
引用
收藏
页码:138 / 141
页数:4
相关论文
共 42 条
[21]   DIFFUSION-COEFFICIENT OF SELENIUM IN SILICON BY SHEET HALL-COEFFICIENT MEASUREMENTS [J].
KIM, CS ;
SAKATA, M .
JAPANESE JOURNAL OF APPLIED PHYSICS, 1979, 18 (02) :247-254
[22]   Density of States Scaling at the Semimetal to Metal Transition in Three Dimensional Topological Insulators [J].
Kobayashi, Koji ;
Ohtsuki, Tomi ;
Imura, Ken-Ichiro ;
Herbut, Igor F. .
PHYSICAL REVIEW LETTERS, 2014, 112 (01)
[23]   Disordered Weak and Strong Topological Insulators [J].
Kobayashi, Koji ;
Ohtsuki, Tomi ;
Imura, Ken-Ichiro .
PHYSICAL REVIEW LETTERS, 2013, 110 (23)
[24]   Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J].
Li, Xiaolin ;
Wang, Xinran ;
Zhang, Li ;
Lee, Sangwon ;
Dai, Hongjie .
SCIENCE, 2008, 319 (5867) :1229-1232
[25]   Model Hamiltonian for topological insulators [J].
Liu, Chao-Xing ;
Qi, Xiao-Liang ;
Zhang, HaiJun ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng .
PHYSICAL REVIEW B, 2010, 82 (04)
[26]  
[Madelung O. Collaboration: Authors and editors of the volumes III/17E-17F-41C Collaboration: Authors and editors of the volumes III/17E-17F-41C], 1998, Non-Tetrahedrally Bonded Elements and Binary Compounds I, V41, P1, DOI [10.1007/10681727_1025., DOI 10.1007/10681727_1025]
[27]   ELECTRICAL-RESISTIVITY MODEL FOR POLYCRYSTALLINE FILMS - CASE OF ARBITRARY REFLECTION AT EXTERNAL SURFACES [J].
MAYADAS, AF ;
SHATZKES, M .
PHYSICAL REVIEW B, 1970, 1 (04) :1382-&
[28]   Conductance modeling for graphene nanoribbon (GNR) interconnects [J].
Naeemi, Azad ;
Meindl, James D. .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (05) :428-431
[29]   Quantum calculations of the carrier mobility: Methodology, Matthiessen's rule, and comparison with semi-classical approaches [J].
Niquet, Yann-Michel ;
Viet-Hung Nguyen ;
Triozon, Francois ;
Duchemin, Ivan ;
Nier, Olivier ;
Rideau, Denis .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (05)
[30]  
Roberts JM, 2015, IEEE INT INTERC TECH, P341, DOI 10.1109/IITC-MAM.2015.7325595