A separator modified by high efficiency oxygen plasma for lithium ion batteries with superior performance

被引:20
作者
Jiang, Qianqian [1 ,2 ]
Li, Zhen [2 ]
Wang, Shuangyin [2 ]
Zhang, Han [1 ]
机构
[1] Shenzhen Univ, SZU NUS Collaborat Innovat Ctr Optoelect Sci & Te, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov,Coll Optoelect Engn, Shenzhen 518060, Peoples R China
[2] Hunan Univ, State Key Lab Chem Biosensing & Chemometr, Coll Chem & Chem Engn, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
POLYMER ELECTROLYTE; LIMN2O4; CHALLENGES; MEMBRANE;
D O I
10.1039/c5ra18457f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In order to improve the electrochemical performance of Li-ion batteries, especially at elevated temperatures, we, for the first time, modified the separator with the oxygen plasma method. Physical characterization including the contact angle measurement and Fourier transform infrared spectrometer analysis indicate that the O-2 plasma treatment can generate oxygen-containing groups on the surface of separator. The Li-ion battery using the O-2 plasma modified separator shows superior performance with a higher initial capacity (135.7 mA h g(-1)) and significantly improved cycling stability (maintaining 96.98% of its initial discharge capacity after 100 cycles), because of the presence of oxygen containing groups such as carbonyl and hydroxyl on the surface of the separator after the plasma modification. Moreover, when cycled at 1C, the discharge capacity of the Li-ion battery using a normal separator is only 86.7 mA h g(-1) whereas the Li-ion battery with the modified separator shows a much higher discharge capacity of 135.7 mA h g(-1), indicating an excellent rate performance due to the electrostatic repulsion between electronegative oxygen functional groups on the surface of modified separator. When tested at an elevated temperature (55 degrees C), the capacity retention of the cell using the modified separator is much higher (85.39%) than that of the normal separator (53.69%). All the tests show that the oxygen functional groups on the surface of the separator by the oxygen plasma modification play a critical role in improving the electrochemical performance of the Li-ion battery.
引用
收藏
页码:92995 / 93001
页数:7
相关论文
共 44 条
[1]  
[Anonymous], FULLERENES NANOTUBES
[2]   Battery separators [J].
Arora, P ;
Zhang, ZM .
CHEMICAL REVIEWS, 2004, 104 (10) :4419-4462
[3]   Factors which limit the cycle life of rechargeable lithium (metal) batteries [J].
Aurbach, D ;
Zinigrad, E ;
Teller, H ;
Dan, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1274-1279
[4]   LiMn2O4 cathode doped with excess lithium and synthesized by co-precipitation for Li-ion batteries [J].
Chan, HW ;
Duh, JG ;
Sheen, SR .
JOURNAL OF POWER SOURCES, 2003, 115 (01) :110-118
[5]   Porous SiO2 as a separator to improve the electrochemical performance of spinel LiMn2O4 cathode [J].
Chen, Jingjuan ;
Wang, Suqing ;
Cai, Dandan ;
Wang, Haihui .
JOURNAL OF MEMBRANE SCIENCE, 2014, 449 :169-175
[6]  
Cho J, 1999, J ELECTROCHEM SOC, V146, P3577, DOI 10.1149/1.1392517
[7]   Particle size-dependent, tunable porous structure of a SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery [J].
Choi, Eun-Sun ;
Lee, Sang-Young .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (38) :14747-14754
[8]   Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators [J].
Choi, Ji-Ae ;
Kim, Sa Heum ;
Kim, Dong-Won .
JOURNAL OF POWER SOURCES, 2010, 195 (18) :6192-6196
[9]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[10]   Double-shelled hollow microspheres of LiMn2O4 for high-performance lithium ion batteries [J].
Ding, Yuan-Li ;
Zhao, Xin-Bing ;
Xie, Jian ;
Cao, Gao-Shao ;
Zhu, Tie-Jun ;
Yu, Hong-Ming ;
Sun, Cheng-Yue .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (26) :9475-9479