Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach

被引:0
作者
Lan, CY [1 ]
Lin, CK
机构
[1] Acad Sinica, Math Inst, Taipei 11529, Taiwan
[2] Natl Chung Cheng Univ, Dept Math, Tainan 701, Taiwan
关键词
slight compressible potential flow; renormalization group; wave group; reaction convection diffusion system; incompressible limit;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we apply the renormalization group method to study the potential flows of a compressible viscous fluid at small Reynolds number. The derived renormalization equation of order one is a system of reaction convection diffusion equations. The global existence and uniqueness of the weak solutions satisfying the energy inequality are proved following the methodology of Leray. The comparison between the exact solution and its approximation is also discussed.
引用
收藏
页码:161 / 188
页数:28
相关论文
共 30 条
[21]  
LION SPL, 1996, MATH TOPICS FLUID ME, V1
[22]   Incompressible limit for a viscous compressible fluid [J].
Lions, PL ;
Masmoudi, N .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (06) :585-627
[23]  
Lions PL., 1998, MATH TOPICS FLUID ME
[24]  
Moise I, 2000, DISCRETE CONT DYN-A, V6, P191
[25]   FAST SINGULAR LIMITS OF HYPERBOLIC PDES [J].
SCHOCHET, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 114 (02) :476-512
[26]  
Temam, 1984, NAVIER STOKES EQUATI
[27]   THE INCOMPRESSIBLE LIMIT AND THE INITIAL LAYER OF THE COMPRESSIBLE EULER EQUATION [J].
UKAI, S .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1986, 26 (02) :323-331
[28]  
VAIGANT VA, 1994, DIFF EQUAT+, V30, P935
[29]   On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscous fluid [J].
Vaigant, VA ;
Kazhikhov, AV .
SIBERIAN MATHEMATICAL JOURNAL, 1995, 36 (06) :1108-1141
[30]   On a certain renormalization group method [J].
Ziane, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) :3290-3299