Integrating genetic and network analysis to characterize genes related to mouse weight

被引:337
作者
Ghazalpour, Anatole
Doss, Sudheer
Zhang, Bin
Wang, Susanna
Plaisier, Christopher
Castellanos, Ruth
Brozell, Alec
Schadt, Eric E.
Drake, Thomas A.
Lusis, Aldons J.
Horvath, Steve [1 ]
机构
[1] Univ Calif Los Angeles, Dept Human Genet, David Geffen Sch Med, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Dept Biostat, Sch Publ Hlth, Los Angeles, CA USA
[4] Rosetta Inpharmat Inc, Washington, DC USA
[5] Univ Calif Los Angeles, Dept Pathol & Lab Med, David Geffen Sch Med, Los Angeles, CA USA
[6] Univ Calif Los Angeles, Dept Med, David Geffen Sch Med, Los Angeles, CA 90024 USA
[7] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90024 USA
来源
PLOS GENETICS | 2006年 / 2卷 / 08期
关键词
D O I
10.1371/journal.pgen.0020130
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Systems biology approaches that are based on the genetics of gene expression have been fruitful in identifying genetic regulatory loci related to complex traits. We use microarray and genetic marker data from an F2 mouse intercross to examine the large-scale organization of the gene co-expression network in liver, and annotate several gene modules in terms of 22 physiological traits. We identify chromosomal loci (referred to as module quantitative trait loci, mQTL) that perturb the modules and describe a novel approach that integrates network properties with genetic marker information to model gene/trait relationships. Specifically, using the mQTL and the intramodular connectivity of a body weight-related module, we describe which factors determine the relationship between gene expression profiles and weight. Our approach results in the identification of genetic targets that influence gene modules (pathways) that are related to the clinical phenotypes of interest.
引用
收藏
页码:1182 / 1192
页数:11
相关论文
共 52 条
  • [1] Error and attack tolerance of complex networks
    Albert, R
    Jeong, H
    Barabási, AL
    [J]. NATURE, 2000, 406 (6794) : 378 - 382
  • [2] Structure and evolution of transcriptional regulatory networks
    Babu, MM
    Luscombe, NM
    Aravind, L
    Gerstein, M
    Teichmann, SA
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2004, 14 (03) : 283 - 291
  • [3] Network biology:: Understanding the cell's functional organization
    Barabási, AL
    Oltvai, ZN
    [J]. NATURE REVIEWS GENETICS, 2004, 5 (02) : 101 - U15
  • [4] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [5] Reverse engineering of regulatory networks in human B cells
    Basso, K
    Margolin, AA
    Stolovitzky, G
    Klein, U
    Dalla-Favera, R
    Califano, A
    [J]. NATURE GENETICS, 2005, 37 (04) : 382 - 390
  • [6] Genetical genomics analysis of a yeast segregant population for transcription network inference
    Bing, N
    Hoeschele, I
    [J]. GENETICS, 2005, 170 (02) : 533 - 542
  • [7] The landscape of genetic complexity across 5,700 gene expression traits in yeast
    Brem, RB
    Kruglyak, L
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (05) : 1572 - 1577
  • [8] Genetic dissection of transcriptional regulation in budding yeast
    Brem, RB
    Yvert, G
    Clinton, R
    Kruglyak, L
    [J]. SCIENCE, 2002, 296 (5568) : 752 - 755
  • [9] R/qtl: QTL mapping in experimental crosses
    Broman, KW
    Wu, H
    Sen, S
    Churchill, GA
    [J]. BIOINFORMATICS, 2003, 19 (07) : 889 - 890
  • [10] Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'
    Bystrykh, L
    Weersing, E
    Dontje, B
    Sutton, S
    Pletcher, MT
    Wiltshire, T
    Su, AI
    Vellenga, E
    Wang, JT
    Manly, KF
    Lu, L
    Chesler, EJ
    Alberts, R
    Jansen, RC
    Williams, RW
    Cooke, MP
    de Haan, G
    [J]. NATURE GENETICS, 2005, 37 (03) : 225 - 232