Performance evaluation of Gaussian radial basis function network classifiers

被引:0
作者
Li, R [1 ]
Lebby, G [1 ]
Baghavan, S [1 ]
机构
[1] N Carolina Agr & Tech State Univ, Greensboro, NC 27411 USA
来源
IEEE SOUTHEASTCON 2002: PROCEEDINGS | 2002年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There are various neural network techniques for pattern recognition and machine intelligence. Radial Basis Function Network (RBFN) has been shown as an important alternative to the conventional backpropagation approach in neural network design. A procedure to optimize the design parameters of the radial basis function classifier is described here. We are evaluating the results of the standard radial basis function classifier, its optimized version and the backpropagation classifier in terms of training speed and classifier accuracy. An artificial two-dimensional data set is created for our study.
引用
收藏
页码:355 / 358
页数:4
相关论文
共 7 条
  • [1] HAYKINS SS, 1994, NEURAL NETWORK
  • [2] Hertz J., 1991, Introduction to the Theory of Neural Computation
  • [3] Jolliffe I., 2002, PRINCIPAL COMPONENT, DOI [DOI 10.1016/0169-7439(87)80084-9, 10.1007/0-387-22440-8_13, DOI 10.1007/0-387-22440-8_13]
  • [4] Fast Learning in Networks of Locally-Tuned Processing Units
    Moody, John
    Darken, Christian J.
    [J]. NEURAL COMPUTATION, 1989, 1 (02) : 281 - 294
  • [5] ON THE TRAINING OF RADIAL BASIS FUNCTION CLASSIFIERS
    MUSAVI, MT
    AHMED, W
    CHAN, KH
    FARIS, KB
    HUMMELS, DM
    [J]. NEURAL NETWORKS, 1992, 5 (04) : 595 - 603
  • [6] NETWORKS FOR APPROXIMATION AND LEARNING
    POGGIO, T
    GIROSI, F
    [J]. PROCEEDINGS OF THE IEEE, 1990, 78 (09) : 1481 - 1497
  • [7] Rumelhart D.E., 1986, Learning internal representations by error propagation, DOI [10.1016/b978-1-4832-1446-7.50035-2, DOI 10.7551/MITPRESS/5236.001.0001]