Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains

被引:57
作者
Krause, Andrew [1 ]
Wang, Bixiang [1 ]
机构
[1] New Mexico Inst Min & Technol, Dept Math, Socorro, NM 87801 USA
关键词
Pullback attractor; Random attractor; Periodic attractor; p-Laplace equation; EXISTENCE; BEHAVIOR;
D O I
10.1016/j.jmaa.2014.03.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with pullback attractors of the stochastic p-Laplace equation defined on the entire space R-n. We first establish the asymptotic compactness of the equation in L-2(R-n) and then prove the existence and uniqueness of non-autonomous random attractors. This attractor is pathwise periodic if the non-autonomous deterministic forcing is time periodic. The difficulty of non-compactness of Sobolev embeddings on R-n is overcome by the uniform smallness of solutions outside a bounded domain. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1018 / 1038
页数:21
相关论文
共 36 条
[1]   RANDOM ATTRACTORS FOR STOCHASTIC FITZHUGH-NAGUMO SYSTEMS DRIVEN BY DETERMINISTIC NON-AUTONOMOUS FORCING [J].
Adili, Abiti ;
Wang, Bixiang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (03) :643-666
[2]  
Arnold L, 1998, Random dynamical systems
[3]   Tempered random attractors for parabolic equations in weighted spaces [J].
Bates, Peter W. ;
Lu, Kening ;
Wang, Bixiang .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (08)
[4]   Random attractors for stochastic reaction-diffusion equations on unbounded domains [J].
Bates, Peter W. ;
Lu, Kening ;
Wang, Bixiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (02) :845-869
[5]   Attractors for Stochastic lattice dynamical systems [J].
Bates, PW ;
Lisei, H ;
Lu, KN .
STOCHASTICS AND DYNAMICS, 2006, 6 (01) :1-21
[6]   The Global Random Attractor for a Class of Stochastic Porous Media Equations [J].
Beyn, Wolf-Juergen ;
Gess, Benjamin ;
Lescot, Paul ;
Roeckner, Michael .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (03) :446-469
[7]  
Caraballo T, 2008, DISCRETE CONT DYN-B, V9, P525
[8]  
Caraballo T, 2008, DISCRETE CONT DYN-A, V21, P415
[9]   The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion [J].
Caraballo, T. ;
Garrido-Atienza, M. J. ;
Taniguchi, T. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) :3671-3684
[10]   Pullback attractors of nonautonomous and stochastic multivalued dynamical systems [J].
Caraballo, T ;
Langa, JA ;
Melnik, VS ;
Valero, J .
SET-VALUED ANALYSIS, 2003, 11 (02) :153-201