Biologically Inspired Scaffolds for Heart Valve Tissue Engineering via Melt Electrowriting

被引:162
作者
Saidy, Navid T. [1 ,2 ]
Wolf, Frederic [2 ]
Bas, Onur [1 ,3 ]
Keijdener, Hans [2 ]
Hutmacher, Dietmar W. [1 ,3 ,4 ]
Mela, Petra [2 ,5 ]
De-Juan-Pardo, Elena M. [1 ]
机构
[1] Queensland Univ Technol, IHBI, 60 Musk Ave, Brisbane, Qld 4059, Australia
[2] Rhein Westfal TH Aachen, Helmholtz Inst, AME Inst Appl Med Engn, Dept Biohybrid & Med Text BioTex, Forckenbeckstr 55, D-52074 Aachen, Germany
[3] Queensland Univ Technol, ARC ITTC Addit Biomfg, 60 Musk Ave, Brisbane, Qld 4059, Australia
[4] Tech Univ Munich, Inst Adv Study, D-85748 Garching, Germany
[5] Tech Univ Munich, Dept Mech Engn, Med Mat & Med Implant Design, Boltzmannstr 15, D-85748 Garching, Germany
基金
澳大利亚研究理事会;
关键词
3D printing; biofabrication; biomimetic; heart valve tissue engineering; melt electrowriting; AORTIC-VALVE; MECHANICAL-PROPERTIES; DESIGN; FIBRIN; FABRICATION; BEHAVIOR; MICROMECHANICS; HYDROGELS; FIBROSA; ANATOMY;
D O I
10.1002/smll.201900873
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Heart valves are characterized to be highly flexible yet tough, and exhibit complex deformation characteristics such as nonlinearity, anisotropy, and viscoelasticity, which are, at best, only partially recapitulated in scaffolds for heart valve tissue engineering (HVTE). These biomechanical features are dictated by the structural properties and microarchitecture of the major tissue constituents, in particular collagen fibers. In this study, the unique capabilities of melt electrowriting (MEW) are exploited to create functional scaffolds with highly controlled fibrous microarchitectures mimicking the wavy nature of the collagen fibers and their load-dependent recruitment. Scaffolds with precisely-defined serpentine architectures reproduce the J-shaped strain stiffening, anisotropic and viscoelastic behavior of native heart valve leaflets, as demonstrated by quasistatic and dynamic mechanical characterization. They also support the growth of human vascular smooth muscle cells seeded both directly or encapsulated in fibrin, and promote the deposition of valvular extracellular matrix components. Finally, proof-of-principle MEW trileaflet valves display excellent acute hydrodynamic performance under aortic physiological conditions in a custom-made flow loop. The convergence of MEW and a biomimetic design approach enables a new paradigm for the manufacturing of scaffolds with highly controlled microarchitectures, biocompatibility, and stringent nonlinear and anisotropic mechanical properties required for HVTE.
引用
收藏
页数:15
相关论文
共 85 条
[1]   Fabrication of a Nanofibrous Scaffold for the In Vitro Culture of Cardiac Progenitor Cells for Myocardial Regeneration [J].
Aghdam, Rouhollah Mehdinavaz ;
Shakhesi, Saeed ;
Najarian, Siamak ;
Mohammadi, Mona Malek ;
Tafti, Seyed Hossein Ahmadi ;
Mirzadeh, Hamid .
INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2014, 63 (05) :229-239
[2]   Design Optimization of a Mechanical Heart Valve for Reducing Valve Thrombogenicity-A Case Study with ATS Valve [J].
Alemu, Yared ;
Girdhar, Gaurav ;
Xenos, Michalis ;
Sheriff, Jawaad ;
Jesty, Jolyon ;
Einav, Shmuel ;
Bluestein, Danny .
ASAIO JOURNAL, 2010, 56 (05) :389-396
[3]   Clinical anatomy of the aortic root [J].
Anderson, RH .
HEART, 2000, 84 (06) :670-673
[4]  
[Anonymous], 2017, Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics
[5]   A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation [J].
Anssari-Benam, Afshin ;
Bader, Dan L. ;
Screen, Hazel R. C. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2011, 22 (02) :253-262
[6]   The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets - Relevance for tissue engineering [J].
Balguid, Angelique ;
Rubbens, Mirjam P. ;
Mol, Anita ;
Bank, Ruud A. ;
Bogers, Ad J. J. C. ;
Van Kats, Jorge P. ;
De Mol, Bas A. J. M. ;
Baaijens, Frank P. T. ;
Bouten, Carlijn V. C. .
TISSUE ENGINEERING, 2007, 13 (07) :1501-1511
[7]   Strain-dependent modulation of macrophage polarization within scaffolds [J].
Ballotta, Virginia ;
Driessen-Mol, Anita ;
Bouten, Carlijn V. C. ;
Baaijens, Frank P. T. .
BIOMATERIALS, 2014, 35 (18) :4919-4928
[8]   An Integrated Design, Material, and Fabrication Platform for Engineering Biomechanically and Biologically Functional Soft Tissues [J].
Bas, Onur ;
D'Angella, Davide ;
Baldwin, Jeremy G. ;
Castro, Nathan J. ;
Wunner, Felix M. ;
Saidy, Navid T. ;
Kollmannsberger, Stefan ;
Reali, Alessandro ;
Rank, Ernst ;
De-Juan-Pardo, Elena M. ;
Hutmacher, Dietmar W. .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (35) :29430-29437
[9]   Biofabricated soft network composites for cartilage tissue engineering [J].
Bas, Onur ;
De-Juan-Pardo, Elena M. ;
Meinert, Christoph ;
D'Angella, Davide ;
Baldwin, Jeremy G. ;
Bray, Laura J. ;
Wellard, R. Mark ;
Kollmannsberger, Stefan ;
Rank, Ernst ;
Werner, Carsten ;
Klein, Travis J. ;
Catelas, Isabelle ;
Hutmacher, Dietmar W. .
BIOFABRICATION, 2017, 9 (02)
[10]   Enhancing structural integrity of hydrogels by using highly organised melt electrospun fibre constructs [J].
Bas, Onur ;
De-Juan-Pardo, Elena M. ;
Chhaya, Mohit P. ;
Wunner, Felix M. ;
Jeon, June E. ;
Klein, Travis J. ;
Hutmacher, Dietmar W. .
EUROPEAN POLYMER JOURNAL, 2015, 72 :451-463