Pearling instability of a cylindrical vesicle

被引:26
作者
Boedec, G. [1 ]
Jaeger, M. [2 ]
Leonetti, M. [1 ]
机构
[1] Aix Marseille Univ, CNRS, IRPHE, Cent Marseille,UMR 7342, F-13384 Marseille, France
[2] Aix Marseille Univ, CNRS, M2P2, Cent Marseille,UMR 7340, F-13451 Marseille, France
关键词
interfacial flows (free surface); low-Reynolds-number flows; membranes; FRONT PROPAGATION; MEMBRANE TUBES; STABILITY; DYNAMICS; SURFACTANT; CURVATURE;
D O I
10.1017/jfm.2014.34
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A cylindrical vesicle under tension can undergo a pearling instability, characterized by the growth of a sinusoidal perturbation which evolves towards a collection of quasi-spherical bulbs connected by thin tethers, like pearls on a necklace. This is reminiscent of the well-known Rayleigh-Plateau instability, where surface tension drives the amplification of sinusoidal perturbations of a cylinder of fluid. We calculate the growth rate of perturbations for a cylindrical vesicle under tension, considering the effect of both inner and outer fluids, with different viscosities. We show that this situation differs strongly from the classical Rayleigh-Plateau case in the sense that, first, the tension must be above a critical value for the instability to develop and, second, even in the strong tension limit, the surface preservation constraint imposed by the presence of the membrane leads to a different asymptotic behaviour. The results differ from previous studies on pearling due to the consideration of variations of tension, which are shown to enhance the pearling instability growth rate, and lower the wavenumber of the fastest growing mode.
引用
收藏
页码:262 / 279
页数:18
相关论文
共 41 条
  • [31] Rayleigh F. R. S., 1878, P LOND MATH SOC, Vs1-10, P4, DOI DOI 10.1112/PLMS/S1-10.1.4
  • [32] Rayleigh L., 1892, PHILOS MAG, VXXXIV, P177, DOI [10.1080/14786449208620304, DOI 10.1080/14786449208620304]
  • [33] Rayleigh L., 1892, LONDON EDINBURGH DUB, V34, P145, DOI DOI 10.1080/14786449208620301
  • [34] Transient pearling and vesiculation of membrane tubes under osmotic gradients
    Sanborn, Jeremy
    Oglecka, Kamila
    Kraut, Rachel S.
    Parikh, Atul N.
    [J]. FARADAY DISCUSSIONS, 2013, 161 : 167 - 176
  • [35] The effect of surfactant on the stability of a liquid thread
    Timmermans, MLE
    Lister, JR
    [J]. JOURNAL OF FLUID MECHANICS, 2002, 459 : 289 - 306
  • [36] Tomotika S., 1935, Proc. R. Soc. London. Ser. A: Math. Phys. Sci., V150, P322, DOI DOI 10.1098/RSPA.1935.0104
  • [37] Pearling instabilities of membrane tubes with anchored polymers
    Tsafrir, I
    Sagi, D
    Arzi, T
    Guedeau-Boudeville, MA
    Frette, V
    Kandel, D
    Stavans, J
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (06) : 1138 - 1141
  • [38] Vesicles and red blood cells in flow: From individual dynamics to rheology
    Vlahovska, Petia M.
    Podgorski, Thomas
    Misbah, Chaouqi
    [J]. COMPTES RENDUS PHYSIQUE, 2009, 10 (08) : 775 - 789
  • [39] STUDIES OF DROP-WEIGHT METHOD FOR SURFACTANT SOLUTIONS .3. DROP STABILITY, EFFECT OF SURFACTANTS ON STABILITY OF A COLUMN OF LIQUID
    WHITAKER, S
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1976, 54 (02) : 231 - 248
  • [40] Shape deformation of ternary vesicles coupled with phase separation
    Yanagisawa, Miho
    Imai, Masayuki
    Taniguchi, Takashi
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (14)