Image Super-Resolution Using Lightweight Multiscale Residual Dense Network

被引:4
|
作者
Li, Shilin [1 ]
Zhao, Ming [1 ]
Fang, Zhengyun [2 ]
Zhang, Yafei [3 ,4 ]
Li, Hongjie [1 ]
机构
[1] Eleictr Power Reasearch Inst Yunnan Power Grid Co, Kunming 650217, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, Coll Land Resource Engn, Kunming 650500, Yunnan, Peoples R China
[3] Kunming Univ Sci & Technol, Coll Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China
[4] Kunming Univ Sci & Technol, Key Lab Artificial Intelligence Yunnan Prov, Kunming 650500, Yunnan, Peoples R China
关键词
FUSION;
D O I
10.1155/2020/2852865
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The current super-resolution methods cannot fully exploit the global and local information of the original low-resolution image, resulting in loss of some information. In order to solve the problem, we propose a multiscale residual dense network (MRDN) for image super-resolution. This network is constructed based on the residual dense network. It can integrate the multiscale information of the image and avoid losing too much information in the deep level of the network, while extracting more information under different receptive fields. In addition, in order to reduce the redundancy of the network parameters of MRDN, we further develop a lightweight parameter method and deploy it at different scales. This method can not only reduce the redundancy of network parameters but also enhance the nonlinear mapping ability of the network at different scales. Thus, it can better learn and fit the feature information of the original image and recover the satisfactory super-resolution image. Extensive experiments are conducted, which demonstrate the effectiveness of the proposed method.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Lightweight image super-resolution with multiscale residual attention network
    Xiao, Cunjun
    Dong, Hui
    Li, Haibin
    Li, Yaqian
    Zhang, Wenming
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [2] Residual Dense Network for Image Super-Resolution
    Zhang, Yulun
    Tian, Yapeng
    Kong, Yu
    Zhong, Bineng
    Fu, Yun
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2472 - 2481
  • [3] Lightweight Image Super-Resolution with ConvNeXt Residual Network
    Zhang, Yong
    Bai, Haomou
    Bing, Yaxing
    Liang, Xiao
    NEURAL PROCESSING LETTERS, 2023, 55 (07) : 9545 - 9561
  • [4] Lightweight Image Super-Resolution with ConvNeXt Residual Network
    Yong Zhang
    Haomou Bai
    Yaxing Bing
    Xiao Liang
    Neural Processing Letters, 2023, 55 : 9545 - 9561
  • [5] Gradient-Guided Fast and Lightweight Image Super-Resolution with Dense Residual Network
    Li S.
    Ma L.
    Shi Y.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2021, 54 (04): : 346 - 355
  • [6] Multiscale Residual Dense Network for the Super-Resolution of Remote Sensing Images
    Kong, Dezhi
    Gu, Lingjia
    Li, Xiaofeng
    Gao, Fang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [7] Multiscale Residual Dense Network for the Super-Resolution of Remote Sensing Images
    Kong, Dezhi
    Gu, Lingjia
    Li, Xiaofeng
    Gao, Fang
    IEEE Transactions on Geoscience and Remote Sensing, 2024, 62 : 1 - 12
  • [8] Lightweight image super-resolution with feature enhancement residual network
    Hui, Zheng
    Gao, Xinbo
    Wang, Xiumei
    NEUROCOMPUTING, 2020, 404 : 50 - 60
  • [9] Partial convolution residual network for lightweight image super-resolution
    Zhang, Long
    Wan, Yi
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (11) : 8019 - 8030
  • [10] A Residual Network with Efficient Transformer for Lightweight Image Super-Resolution
    Yan, Fengqi
    Li, Shaokun
    Zhou, Zhiguo
    Shi, Yonggang
    ELECTRONICS, 2024, 13 (01)