Recurrence relations for characters of affine Lie algebra Al(1)

被引:17
作者
Jerkovic, Miroslav [1 ]
机构
[1] Univ Zagreb, Fac Chem Engn & Technol, Zagreb, Croatia
关键词
INTERTWINING-OPERATORS; PRINCIPAL SUBSPACES; STANDARD MODULES; VERTEX OPERATORS; BASIC REPRESENTATIONS; IDENTITIES; A(1)((1))-MODULES; CONFIGURATIONS; MODELS;
D O I
10.1016/j.jpaa.2008.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the known description of combinatorial bases for Feigin-Stoyanovsky's type subspaces of standard modules for affine Lie algebra sl(l + 1, C), as well as certain intertwining operators between standard modules, we obtain exact sequences of Feigin-Stoyanovsky's type subspaces at fixed level k. This directly leads to systems of recurrence relations for formal characters of those subspaces. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:913 / 926
页数:14
相关论文
共 30 条
[21]   THE STRUCTURE OF STANDARD MODULES .1. UNIVERSAL-ALGEBRAS AND THE ROGERS-RAMANUJAN IDENTITIES [J].
LEPOWSKY, J ;
WILSON, RL .
INVENTIONES MATHEMATICAE, 1984, 77 (02) :199-290
[22]   THE STRUCTURE OF STANDARD MODULES .2. THE CASE A1(1), PRINCIPAL GRADATION [J].
LEPOWSKY, J ;
WILSON, RL .
INVENTIONES MATHEMATICAE, 1985, 79 (03) :417-442
[23]  
Lepowsky J., 1985, CONT MATH, V46
[24]  
Lepowsky J., 2004, Introduction to vertex operator algebras and their representations
[25]   Local systems of vertex operators, vertex superalgebras and modules [J].
Li, HS .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1996, 109 (02) :143-195
[26]   Basic representations for classical affine Lie algebras [J].
Primc, M .
JOURNAL OF ALGEBRA, 2000, 228 (01) :1-50
[27]   VERTEX OPERATOR CONSTRUCTION OF STANDARD MODULES FOR A(N)((1)) [J].
PRIMC, M .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 162 (01) :143-187
[28]  
Primc M, 2007, CONTEMP MATH, V442, P425
[29]   UNITARY REPRESENTATIONS OF SOME INFINITE DIMENSIONAL GROUPS [J].
SEGAL, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 80 (03) :301-342
[30]  
Stoyanovskii A.V., 1994, FUNKTSIONAL ANAL PRI, V28, P68