Recurrence relations for characters of affine Lie algebra Al(1)

被引:17
作者
Jerkovic, Miroslav [1 ]
机构
[1] Univ Zagreb, Fac Chem Engn & Technol, Zagreb, Croatia
关键词
INTERTWINING-OPERATORS; PRINCIPAL SUBSPACES; STANDARD MODULES; VERTEX OPERATORS; BASIC REPRESENTATIONS; IDENTITIES; A(1)((1))-MODULES; CONFIGURATIONS; MODELS;
D O I
10.1016/j.jpaa.2008.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the known description of combinatorial bases for Feigin-Stoyanovsky's type subspaces of standard modules for affine Lie algebra sl(l + 1, C), as well as certain intertwining operators between standard modules, we obtain exact sequences of Feigin-Stoyanovsky's type subspaces at fixed level k. This directly leads to systems of recurrence relations for formal characters of those subspaces. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:913 / 926
页数:14
相关论文
共 30 条
[1]   AN ANALYTIC PROOF OF ROGERS-RAMANUJAN-GORDON IDENTITIES [J].
ANDREWS, GE .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (04) :844-&
[2]  
Andrews GE., 1976, THEORY PARTITIONS EN
[3]  
[Anonymous], MEM AM MATH SOC
[4]   Vertex-algebraic structure of the principal subspaces of certain A1(1)-modules, II:: Higher-level case [J].
Calinescu, C. ;
Lepowsky, J. ;
Milas, A. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (08) :1928-1950
[5]   Vertex-algebraic structure of the principal subspaces of certain A1(1)-modules, I:: Level one case [J].
Calinescu, C. ;
Lepowsky, J. ;
Milas, A. .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (01) :71-92
[6]   Intertwining vertex operators and certain representations of (sl(n))over cap [J].
Calinescu, Corina .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (01) :47-79
[7]   Principal subspaces of higher-level standard sl(3)-modules [J].
Calinescu, Corina .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (02) :559-575
[8]   The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators [J].
Capparelli, S. ;
Lepowsky, J. ;
Milas, A. .
RAMANUJAN JOURNAL, 2006, 12 (03) :379-397
[9]   The Rogers-Ramanujan recursion and intertwining operators [J].
Capparelli, S ;
Lepowsky, J ;
Milas, A .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (06) :947-966
[10]  
Dong C., 1993, PROGR MATH, V112, px+202