Automatic Optic Disc Localization Using Particle Swarm Optimization Technique

被引:0
作者
Jois, Subramanya S. P. [1 ]
Harsha, S. [1 ]
Kumar, J. R. Harish [1 ,2 ]
机构
[1] Indian Inst Sci, Dept Elect Engn, Bangalore, Karnataka, India
[2] MAHE, Dept Elect & Elect Engn, Manipal Inst Technol, Manipal, India
来源
PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE | 2018年
关键词
Optic disc; fundus image; particle swarm optimization; localization; entropy; glaucoma; DIGITAL FUNDUS IMAGES; RETINAL IMAGES; NERVE HEAD; SEGMENTATION; BOUNDARY; VESSELS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
There is a growing need for plenarily automated algorithms that expeditiously localize the optic disc region in retinal fundus images for the analysis of retinal pathologies such as glaucoma. In this paper, we propose a methodology based on particle swarm optimization for automatic localization of optic disc region from retinal fundus images, where minimization of the fitness function is utilized to resolve optimization quandaries. Here, kernels are modeled as particles and they test the region-of-interest based on the fitness function, in the respective databases, where it is likely that the optic disc exists. The proposed method is validated on a total of 1670 fundus images obtained from various publicly available fundus image datasets. The optic disc localization accuracy obtained by the proposed method are 100%, 98.01%, 96.15%, 98.87%, 100%, and 100% on DRIVE, DRISHTIGS, DIARETDB0, DIARETDB1, DRIONS-DB, and MESSIDOR fundus image databases, respectively. The precision of localization was improved with initialization of kernel particles within bright region-of-interest in fundus images.
引用
收藏
页码:1718 / 1722
页数:5
相关论文
共 27 条
[1]  
Abramoff Michael D, 2010, IEEE Rev Biomed Eng, V3, P169, DOI 10.1109/RBME.2010.2084567
[2]  
[Anonymous], 2006, DIARETDB0 EVALUATION
[3]   Detecting the Optic Disc Boundary in Digital Fundus Images Using Morphological, Edge Detection, and Feature Extraction Techniques [J].
Aquino, Arturo ;
Emilio Gegundez-Arias, Manuel ;
Marin, Diego .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (11) :1860-1869
[4]   Identification of the optic nerve head with genetic algorithms [J].
Carmona, Enrique J. ;
Rincon, Mariano ;
Garcia-Feijoo, Julian ;
Martinez-de-la-Casa, Jose M. .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2008, 43 (03) :243-259
[5]   FEEDBACK ON A PUBLICLY DISTRIBUTED IMAGE DATABASE: THE MESSIDOR DATABASE [J].
Decenciere, Etienne ;
Zhang, Xiwei ;
Cazuguel, Guy ;
Lay, Bruno ;
Cochener, Beatrice ;
Trone, Caroline ;
Gain, Philippe ;
Ordonez-Varela, John-Richard ;
Massin, Pascale ;
Erginay, Ali ;
Charton, Beatrice ;
Klein, Jean-Claude .
IMAGE ANALYSIS & STEREOLOGY, 2014, 33 (03) :231-234
[6]  
Eberhart R., 1995, MHS95 P 6 INT S MICR, DOI [DOI 10.1109/MHS.1995.494215, 10.1109/MHS.1995.494215]
[7]   Detection of optic disc in retinal images by means of a geometrical model of vessel structure [J].
Foracchia, M ;
Grisan, E ;
Ruggeri, A .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (10) :1189-1195
[8]   Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels [J].
Hoover, A ;
Goldbaum, M .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003, 22 (08) :951-958
[9]  
Jois S, 2017, 2017 4TH IEEE UTTAR PRADESH SECTION INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ELECTRONICS (UPCON), P156, DOI 10.1109/UPCON.2017.8251040
[10]  
Kauppi T, 2007, DIARETDB1 STANDARD D