Reverse and forward engineering of Drosophila corneal nanocoatings

被引:43
作者
Kryuchkov, Mikhail [1 ,2 ]
Bilousov, Oleksii [2 ]
Lehmann, Jannis [3 ]
Fiebig, Manfred [3 ]
Katanaev, Vladimir L. [1 ,2 ,4 ]
机构
[1] Univ Geneva, Fac Med, Dept Cell Physiol & Metab, Geneva, Switzerland
[2] Univ Lausanne, Dept Pharmacol & Toxicol, Lausanne, Switzerland
[3] Swiss Fed Inst Technol, Dept Mat, Zurich, Switzerland
[4] Far Eastern Fed Univ, Sch Biomed, Vladivostok, Russia
关键词
MAMMALIAN WAX BIOSYNTHESIS; INSECT; PROTEINS; PATTERN; SYSTEM; CHITIN; MODEL; LENS;
D O I
10.1038/s41586-020-2707-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The building blocks of the nanostructures observed onDrosophilacorneas are determined, and then used to create artificial nanostructures with anti-reflective and anti-adhesive properties. Insect eyes have an anti-reflective coating, owing to nanostructures on the corneal surface creating a gradient of refractive index between that of air and that of the lens material(1,2). These nanocoatings have also been shown to provide anti-adhesive functionality(3). The morphology of corneal nanocoatings are very diverse in arthropods, with nipple-like structures that can be organized into arrays or fused into ridge-like structures(4). This diversity can be attributed to a reaction-diffusion mechanism(4)and patterning principles developed by Alan Turing(5), which have applications in numerous biological settings(6). The nanocoatings on insect corneas are one example of such Turing patterns, and the first known example of nanoscale Turing patterns(4). Here we demonstrate a clear link between the morphology and function of the nanocoatings onDrosophilacorneas. We find that nanocoatings that consist of individual protrusions have better anti-reflective properties, whereas partially merged structures have better anti-adhesion properties. We use biochemical analysis and genetic modification techniques to reverse engineer the protein Retinin and corneal waxes as the building blocks of the nanostructures. In the context of Turing patterns, these building blocks fulfil the roles of activator and inhibitor, respectively. We then establish low-cost production of Retinin, and mix this synthetic protein with waxes to forward engineer various artificial nanocoatings with insect-like morphology and anti-adhesive or anti-reflective function. Our combined reverse- and forward-engineering approach thus provides a way to economically produce functional nanostructured coatings from biodegradable materials.
引用
收藏
页码:383 / +
页数:10
相关论文
共 41 条
[1]   The genome sequence of Drosophila melanogaster [J].
Adams, MD ;
Celniker, SE ;
Holt, RA ;
Evans, CA ;
Gocayne, JD ;
Amanatides, PG ;
Scherer, SE ;
Li, PW ;
Hoskins, RA ;
Galle, RF ;
George, RA ;
Lewis, SE ;
Richards, S ;
Ashburner, M ;
Henderson, SN ;
Sutton, GG ;
Wortman, JR ;
Yandell, MD ;
Zhang, Q ;
Chen, LX ;
Brandon, RC ;
Rogers, YHC ;
Blazej, RG ;
Champe, M ;
Pfeiffer, BD ;
Wan, KH ;
Doyle, C ;
Baxter, EG ;
Helt, G ;
Nelson, CR ;
Miklos, GLG ;
Abril, JF ;
Agbayani, A ;
An, HJ ;
Andrews-Pfannkoch, C ;
Baldwin, D ;
Ballew, RM ;
Basu, A ;
Baxendale, J ;
Bayraktaroglu, L ;
Beasley, EM ;
Beeson, KY ;
Benos, PV ;
Berman, BP ;
Bhandari, D ;
Bolshakov, S ;
Borkova, D ;
Botchan, MR ;
Bouck, J ;
Brokstein, P .
SCIENCE, 2000, 287 (5461) :2185-2195
[2]   Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes [J].
Anderson, MS ;
Gaimari, SD .
JOURNAL OF STRUCTURAL BIOLOGY, 2003, 142 (03) :364-368
[3]  
[Anonymous], 2020, NAN GLOB MARK TRAJ A
[4]   A CORNEAL NIPPLE PATTERN IN INSECT COMPOUND EYES [J].
BERNHARD, CG ;
MILLER, WH .
ACTA PHYSIOLOGICA SCANDINAVICA, 1962, 56 (3-4) :385-&
[5]  
Bhushan B., 2017, Springer Handbook of Nanotechnology, V4
[6]   Molecular mechanism of Thioflavin-T binding to amyloid fibrils [J].
Biancalana, Matthew ;
Koide, Shohei .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2010, 1804 (07) :1405-1412
[7]   An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases [J].
Bischof, Johannes ;
Maeda, Robert K. ;
Hediger, Monika ;
Karch, Francois ;
Basler, Konrad .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (09) :3312-3317
[8]   Diverse set of Turing nanopatterns coat corneae across insect lineages [J].
Blagodatski, Artem ;
Sergeev, Anton ;
Kryuchkov, Mikhail ;
Lopatina, Yuliya ;
Katanaev, Vladimir L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (34) :10750-10755
[9]   Versatility of Turing patterns potentiates rapid evolution in tarsal attachment microstructures of stick and leaf insects (Phasmatodea) [J].
Buescher, Thies H. ;
Kryuchkov, Mikhail ;
Katanaev, Vladimir L. ;
Gorb, Stanislav N. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (143)
[10]   A broken α-helix in folded α-synuclein [J].
Chandra, S ;
Chen, XC ;
Rizo, J ;
Jahn, R ;
Südhof, TC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (17) :15313-15318