Screening for Obstructive Sleep Apnea Risk by Using Machine Learning Approaches and Anthropometric Features

被引:15
作者
Tsai, Cheng-Yu [1 ]
Huang, Huei-Tyng [2 ]
Cheng, Hsueh-Chien [3 ]
Wang, Jieni [4 ]
Duh, Ping-Jung [5 ]
Hsu, Wen-Hua [6 ]
Stettler, Marc [1 ]
Kuan, Yi-Chun [7 ,8 ,9 ,10 ,11 ]
Lin, Yin-Tzu [12 ]
Hsu, Chia-Rung [8 ]
Lee, Kang-Yun [13 ]
Kang, Jiunn-Horng [14 ,15 ,16 ]
Wu, Dean [7 ,8 ,9 ,10 ,11 ]
Lee, Hsin-Chien [17 ]
Wu, Cheng-Jung [18 ]
Majumdar, Arnab [1 ]
Liu, Wen-Te [6 ,7 ,13 ,15 ]
机构
[1] Imperial Coll London, Ctr Transport Studies, Dept Civil & Environm Engn, London SW7 2AZ, England
[2] UCL, Dept Med Phys & Biomed Engn, London WC1E 6BT, England
[3] Wellcome Sanger Inst, Parasites & Microbes Programme, Hinxton CB10 1RQ, England
[4] Univ Cambridge, Chem Engn & Biotechnol, Cambridge CB3 0AS, England
[5] UCL, Div Psychol & Language Sci, Cognit Neurosci, London WC1H 0AP, England
[6] Taipei Med Univ, Coll Med, Sch Resp Therapy, Taipei 110301, Taiwan
[7] Taipei Med Univ, Shuang Ho Hosp, Sleep Ctr, New Taipei 235041, Taiwan
[8] Taipei Med Univ, Shuang Ho Hosp, Dept Neurol, New Taipei 235041, Taiwan
[9] Taipei Med Univ, Coll Med, Sch Med, Dept Neurol, Taipei 110301, Taiwan
[10] Taipei Med Univ, Taipei Neurosci Inst, Taipei 110301, Taiwan
[11] Taipei Med Univ, Shuang Ho Hosp, Dementia Ctr, New Taipei 235041, Taiwan
[12] Chang Gung Mem Hosp Linkou, Dept Med Imaging & Intervent, Taoyuan 33305, Taiwan
[13] Taipei Med Univ, Shuang Ho Hosp, Dept Internal Med, Div Pulm Med, New Taipei 235041, Taiwan
[14] Taipei Med Univ Hosp, Dept Phys Med & Rehabil, Taipei 110301, Taiwan
[15] Taipei Med Univ, Res Ctr Artificial Intelligence Med, Taipei 110301, Taiwan
[16] Taipei Med Univ, Coll Biomed Engn, Grad Inst Nanomed & Med Engn, Taipei 110301, Taiwan
[17] Taipei Med Univ Hosp, Dept Psychiat, Taipei 110301, Taiwan
[18] Taipei Med Univ, Shuang Ho Hosp, Dept Otolaryngol, New Taipei 235041, Taiwan
关键词
obstructive sleep apnea; polysomnography; anthropometric features; random forest; visceral fat level; AMERICAN-ACADEMY; BODY-COMPOSITION; MEDICINE; DIAGNOSIS; OBESITY;
D O I
10.3390/s22228630
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Obstructive sleep apnea (OSA) is a global health concern and is typically diagnosed using in-laboratory polysomnography (PSG). However, PSG is highly time-consuming and labor-intensive. We, therefore, developed machine learning models based on easily accessed anthropometric features to screen for the risk of moderate to severe and severe OSA. We enrolled 3503 patients from Taiwan and determined their PSG parameters and anthropometric features. Subsequently, we compared the mean values among patients with different OSA severity and considered correlations among all participants. We developed models based on the following machine learning approaches: logistic regression, k-nearest neighbors, naive Bayes, random forest (RF), support vector machine, and XGBoost. Collected data were first independently split into two data sets (training and validation: 80%; testing: 20%). Thereafter, we adopted the model with the highest accuracy in the training and validation stage to predict the testing set. We explored the importance of each feature in the OSA risk screening by calculating the Shapley values of each input variable. The RF model achieved the highest accuracy for moderate to severe (84.74%) and severe (72.61%) OSA. The level of visceral fat was found to be a predominant feature in the risk screening models of OSA with the aforementioned levels of severity. Our machine learning models can be employed to screen for OSA risk in the populations in Taiwan and in those with similar craniofacial structures.
引用
收藏
页数:15
相关论文
共 50 条
[1]   Treatment options for obstructive sleep apnea [J].
Abad, Vivien C. ;
Guilleminault, Christian .
CURRENT TREATMENT OPTIONS IN NEUROLOGY, 2009, 11 (05) :358-367
[2]   A comprehensive review of obstructive sleep apnea [J].
Abbasi, Anna ;
Gupta, Sushilkumar Satish ;
Sabharwal, Nitin ;
Meghrajani, Vineet ;
Sharma, Shaurya ;
Karnholz, Stephan ;
Kupfee, Yizhak .
SLEEP SCIENCE, 2021, 14 (02) :142-154
[3]  
Amra Babak, 2018, Oman Med J, V33, P184, DOI [10.5001/omj.2018.36, 10.5001/omj.2018.36]
[4]   Classification of Sleep Apnea Severity by Electrocardiogram Monitoring Using a Novel Wearable Device [J].
Baty, Florent ;
Boesch, Maximilian ;
Widmer, Sandra ;
Annaheim, Simon ;
Fontana, Piero ;
Camenzind, Martin ;
Rossi, Rene M. ;
Schoch, Otto D. ;
Brutsche, Martin H. .
SENSORS, 2020, 20 (01)
[5]   Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis [J].
Benjafield, Adam V. ;
Ayas, Najib T. ;
Eastwood, Peter R. ;
Heinzer, Raphael ;
Ip, Mary S. M. ;
Morrell, Mary J. ;
Nunez, Carlos M. ;
Patel, Sanjay R. ;
Penzel, Thomas ;
Pepin, Jean-Louis D. ;
Peppard, Paul E. ;
Sinha, Sanjeev ;
Tufik, Sergio ;
Valentine, Kate ;
Malhotra, Atul .
LANCET RESPIRATORY MEDICINE, 2019, 7 (08) :687-698
[6]   AASM Scoring Manual Updates for 2017 (Version 2.4) [J].
Berry, Richard B. ;
Brooks, Rita ;
Gamaldo, Charlene ;
Harding, Susan M. ;
Lloyd, Robin M. ;
Quan, Stuart F. ;
Troester, Matthew T. ;
Vaughn, Bradley V. .
JOURNAL OF CLINICAL SLEEP MEDICINE, 2017, 13 (05) :665-666
[7]   Comparability of pulse oximeters used in sleep medicine for the screening of OSA [J].
Boehning, N. ;
Schultheiss, B. ;
Eilers, S. ;
Penzel, T. ;
Boehning, W. ;
Schmittendorf, E. .
PHYSIOLOGICAL MEASUREMENT, 2010, 31 (07) :875-888
[8]  
Carter Robert 3rd, 2008, Pathophysiology, V15, P71, DOI 10.1016/j.pathophys.2008.04.009
[9]   Craniofacial skeletal architecture and obstructive sleep apnoea syndrome severity [J].
Costa e Sousa, Rui Augusto ;
dos Santos Gil, Nuno Alexandre .
JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY, 2013, 41 (08) :740-746
[10]   Detection and Classification of Immature Leukocytes for Diagnosis of Acute Myeloid Leukemia Using Random Forest Algorithm [J].
Dasariraju, Satvik ;
Huo, Marc ;
McCalla, Serena .
BIOENGINEERING-BASEL, 2020, 7 (04) :1-12