Monte Carlo modeling applied to studies of quantum cascade lasers

被引:11
|
作者
Borowik, Piotr [1 ]
Thobel, Jean-Luc [2 ]
Adamowicz, Leszek [1 ]
机构
[1] Warsaw Univ Technol, Fac Phys, Ul Koszykowa 75, PL-00662 Warsaw, Poland
[2] Univ Lille 1, Inst Elect Microelect & Nanotechnol, CNRS, UMR 8520,CS 60069, Ave Poincare, F-59652 Villeneuve Dascq, France
关键词
Monte Carlo; Quantum cascade laser; Computer simulations; DIFFERENCE-FREQUENCY-GENERATION; ELECTRON-ELECTRON SCATTERING; CARRIER-CARRIER SCATTERING; TEMPERATURE PERFORMANCE; PHONON-SCATTERING; MICROSCOPIC THEORY; HOT PHONONS; K OPERATION; SIMULATION; TRANSPORT;
D O I
10.1007/s11082-017-0931-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One of the commonly used approaches of solving electron transport problems in quantum cascade lasers (QCL) is the Monte Carlo (MC) method, based on semiclassical description in the framework of the Boltzmann Transport Equation. A major benefit of MC modeling is that it only relies on well-established material parameters and structure specification, in most cases without the need to use phenomenological parameters. The results of the modeling can be easily interpreted and they give microscopic insight of QCL operation. The goal of the present paper is to review the application of the MC technique to the studies of operation of QCL. The description of the components of the simulation algorithm is provided. Various physical mechanisms governing electron transport in QCL are described and their influence on the operation are reviewed.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Magnetron sputter deposition as visualized by Monte Carlo modeling
    Depla, D.
    Leroy, W. P.
    THIN SOLID FILMS, 2012, 520 (20) : 6337 - 6354
  • [32] Theoretical study and simulation of electron dynamics in quantum cascade lasers
    Tortora, S
    Compagnone, F
    Di Carlo, A
    Lugli, P
    Pellegrini, MT
    Troccoli, M
    Scamarcio, G
    PHYSICA B, 1999, 272 (1-4): : 219 - 222
  • [33] Gradient estimation for applied Monte Carlo analyses
    Melchers, RE
    Ahammed, M
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2002, 78 (03) : 283 - 288
  • [34] Combined rate equation and Monte Carlo studies of electron transport in a GaAs/Al0.45Ga0.55As quantum-cascade laser
    Borowik, Piotr
    Thobel, Jean-Luc
    Adamowicz, Leszek
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2012, 27 (11)
  • [35] Modeling quantum cascade lasers: Coupled electron and phonon transport far from equilibrium and across disparate spatial scales
    Shi, Y. B.
    Mei, S.
    Jonasson, O.
    Knezevic, I.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2017, 65 (6-8):
  • [36] Chaotic behavior of quantum cascade lasers at ignition
    Onder, D. E.
    Kalaee, A. A. S.
    Winge, D. O.
    Wacker, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 103
  • [37] Genetic algorithm applied to the optimization of quantum cascade lasers with second harmonic generation
    Gajic, A.
    Radovanovic, J.
    Milanovic, V.
    Indjin, D.
    Ikonic, Z.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (05)
  • [38] Numerically efficient density-matrix technique for modeling electronic transport in mid-infrared quantum cascade lasers
    Soleimanikahnoj, S.
    Jonasson, O.
    Karimi, F.
    Knezevic, I.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2021, 20 (01) : 280 - 309
  • [39] MCVM: MONTE CARLO MODELING OF PHOTON MIGRATION IN VOXELIZED MEDIA
    Li, Ting
    Gong, Hui
    Luo, Qingming
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2010, 3 (02) : 91 - 102
  • [40] Numerical Simulation of ZnO-Based Terahertz Quantum Cascade Lasers
    Bellotti, Enrico
    Paiella, Roberto
    JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (07) : 1097 - 1103