Pancyclic graphs and linear forests

被引:4
作者
Faudree, Ralph J. [2 ]
Gould, Ronald J. [1 ]
Jacobson, Michael S. [3 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] Univ Colorado, Dept Math, Denver, CO 80217 USA
关键词
Pancyclic; Linear forest; Minimum degree;
D O I
10.1016/j.disc.2007.12.094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given integers k, s, t with 0 <= s <= t and k >= 0, a (k, t, s)-linear forest F is a graph that is the vertex disjoint union of 1 paths with a total of k edges and with s of the paths being single vertices. If the number of single vertex paths is not critical, the forest F will simply be called a (k. t)-linear forest. A graph G of order n >= k + t is (k. t)-hamiltonian if for any (k, t)-linear forest F there is a hamiltonian cycle containing F. More generally, given integers in and it with k + t <= m <= it, a graph G of order it is (k, t, s, in)-pancyclic if for any (k. t, s)-linear forest F and for each integer r with in <= r <= n, there is a cycle of length r containing the linear forest F. Minimum degree conditions and minimum sum of degree conditions of nonadjacent vertices that imply that a graph is (k, t, s, m)-pancyclic (or just (k, t, m)-pancyclic) are proved. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1178 / 1189
页数:12
相关论文
共 8 条
[1]  
[Anonymous], 1964, Magyar Tud. Akad. Mat. Kutato Int. Kozl, V8, P355
[2]  
BONDY A, 1997, P 2 LOU C COMB GRAPH, P167
[3]  
Chartrand G., 1996, Graphs & Digraphs, V3rd
[4]  
Dirac G.A., 1952, Proc. Lond. Math. Soc., V2, P69, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
[5]   Generalizing pancyclic and k-ordered graphs [J].
Faudree, RJ ;
Gould, RJ ;
Jacobson, MS ;
Lesniak, L .
GRAPHS AND COMBINATORICS, 2004, 20 (03) :291-309
[6]  
HAGGKVIST R, 1979, GRAPH THEORY RELATED, P219
[7]  
Kronk H.V., 1969, The Many Facets of Graph Theory, P193
[8]  
Ore O., 1960, Am. Math. Mon, P55, DOI DOI 10.2307/2308928