Numerical modeling of seismic wavefields in transversely isotropic media with a compact staggered-grid finite difference scheme

被引:36
作者
Du Qizhen [1 ,2 ]
Bin, Li [1 ,2 ]
Bo, Hou [1 ,2 ]
机构
[1] China Univ Petr E China, Sch Earth Resource & Informat, Dongying 257061, Peoples R China
[2] China Univ Petr, CNPC Key Lab Geophys Explorat, Beijing 102202, Peoples R China
关键词
transversely isotropic medium; compact staggered-grid; the first-order velocity-stress wave equations; numerical dispersion; wave field simulation; HETEROGENEOUS MEDIA; PROPAGATION;
D O I
10.1007/s11770-009-0008-z
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
To deal with the numerical dispersion problem, by combining the staggered-grid technology with the compact finite difference scheme, we derive a compact staggered-grid finite difference scheme from the first-order velocity-stress wave equations for the transversely isotropic media. Comparing the principal truncation error terms of the compact staggered-grid finite difference scheme, the staggered-grid finite difference scheme, and the compact finite difference scheme, we analyze the approximation accuracy of these three schemes using Fourier analysis. Finally, seismic wave numerical simulation in transversely isotropic (VTI) media is performed using the three schemes. The results indicate that the compact staggered-grid finite difference scheme has the smallest truncation error, the highest accuracy, and the weakest numerical dispersion among the three schemes. In summary, the numerical modeling shows the validity of the compact staggered-grid finite difference scheme.
引用
收藏
页码:42 / 49
页数:8
相关论文
共 17 条
[1]  
BENDIKS, 2005, J COMPUT PHYS, V208, P675
[2]  
Crase E., 1990, SEG Expanded Abstracts, V9, P987, DOI DOI 10.1190/1.1890407
[3]  
Dong LG, 2000, CHINESE J GEOPHYS-CH, V43, P411
[4]   COMPACT FINITE-DIFFERENCE SCHEMES WITH SPECTRAL-LIKE RESOLUTION [J].
LELE, SK .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 103 (01) :16-42
[5]   4TH-ORDER FINITE-DIFFERENCE P-SV SEISMOGRAMS [J].
LEVANDER, AR .
GEOPHYSICS, 1988, 53 (11) :1425-1436
[6]  
LIU QS, 1996, J TSINGHUA U, V36, P7
[7]   Finite-difference numerical modeling with even-order accuracy in two-phase anisotropic media [J].
Liu Yang ;
Wei Xiucheng .
APPLIED GEOPHYSICS, 2008, 5 (02) :107-114
[8]  
MA YW, 1996, SCI CHINA SER A, V26, P657
[9]  
MADARIAGA R, 1976, B SEISMOL SOC AM, V66, P639
[10]   A robust high-order compact method for large eddy simulation [J].
Nagarajan, S ;
Lele, SK ;
Ferziger, JH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 191 (02) :392-419