Three-Phase Time-Multiplexed Planar Power Transmission to Distributed Implants

被引:52
作者
Lee, Byunghun [1 ]
Ahn, Dukju [2 ]
Ghovanloo, Maysam [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, GT Bion Lab, Atlanta, GA 30308 USA
[2] Univ Calif San Diego, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Distributed neural interface; implantable medical devices; planar spiral coils; three-phase excitation; wireless power transmission (WPT); SMART EXPERIMENTAL ARENA; WIRELESS; EFFICIENCY; BRAIN; DESIGN; AMPLIFIERS; COIL;
D O I
10.1109/JESTPE.2015.2436391
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A platform has been presented for wireless powering of receivers (Rx's) that are arbitrarily distributed over a large area. A potential application could be powering of small Rx implants, distributed over large areas of the brain. The transmitter (Tx) consists of three overlapping layers of hexagonal planar spiral coils (hex-PSC) that are horizontally shifted to provide the strongest and most homogeneous electromagnetic flux coverage. The three-layer hex-PSC array is driven by a three-phase time-division-multiplexed power Tx that takes the advantage of the carrier phase shift, coil geometries, and Rx time constant to homogeneously power the arbitrarily distributed Rx's regardless of their misalignments. The functionality of the proposed three-phase power transmission concept has been verified in a detailed scaled-up high-frequency structure simulator Advanced Design System simulation model and measurement setup, and compared with a conventional Tx. The new Tx delivers 5.4 mW to each Rx and achieves, on average, 5.8% power transfer efficiency to the Rx at the worst case 90 degrees angular misalignment, compared with 1.4% by the conventional Tx.
引用
收藏
页码:263 / 272
页数:10
相关论文
共 32 条
[1]   Optimal Design of Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants [J].
Ahn, Dukju ;
Ghovanloo, Maysam .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2016, 10 (01) :125-137
[2]   The Brain Activity Map [J].
Alivisatos, A. Paul ;
Chun, Miyoung ;
Church, George M. ;
Deisseroth, Karl ;
Donoghue, John P. ;
Greenspan, Ralph J. ;
McEuen, Paul L. ;
Roukes, Michael L. ;
Sejnowski, Terrence J. ;
Weiss, Paul S. ;
Yuste, Rafael .
SCIENCE, 2013, 339 (6125) :1284-1285
[3]   The Brain Activity Map Project and the Challenge of Functional Connectomics [J].
Alivisatos, A. Paul ;
Chun, Miyoung ;
Church, George M. ;
Greenspan, Ralph J. ;
Roukes, Michael L. ;
Yuste, Rafael .
NEURON, 2012, 74 (06) :970-974
[4]  
[Anonymous], 2011, 2011 DESIGN AUTOMATI, DOI DOI 10.1109/DATE.2011.5763123
[5]   A Fully-Integrated, Miniaturized (0.125 mm2) 10.5 μW Wireless Neural Sensor [J].
Biederman, William ;
Yeager, Daniel J. ;
Narevsky, Nathan ;
Koralek, Aaron C. ;
Carmena, Jose M. ;
Alon, Elad ;
Rabaey, Jan M. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2013, 48 (04) :960-970
[6]   Bridging the Brain to the World: A Perspective on Neural Interface Systems [J].
Donoghue, John P. .
NEURON, 2008, 60 (03) :511-521
[7]   A modular 32-site wireless neural stimulation microsystem [J].
Ghovanloo, M ;
Najafi, K .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2004, 39 (12) :2457-2466
[8]   A wide-band power-efficient inductive wireless link for implantable microelectronic devices using multiple-carriers [J].
Ghovanloo, Maysam ;
Atluri, Suresh .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (10) :2211-2221
[9]   A low-power integrated circuit for a wireless 100-electrode neural recording system [J].
Harrison, Reid R. ;
Watkins, Paul T. ;
Kier, Ryan J. ;
Lovejoy, Robert O. ;
Black, Daniel J. ;
Greger, Bradley ;
Solzbacher, Florian .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2007, 42 (01) :123-133
[10]   Wireless power transfer to deep-tissue microimplants [J].
Ho, John S. ;
Yeh, Alexander J. ;
Neofytou, Evgenios ;
Kim, Sanghoek ;
Tanabe, Yuji ;
Patlolla, Bhagat ;
Beygui, Ramin E. ;
Poon, Ada S. Y. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (22) :7974-7979