Split Property for Free Massless Finite Helicity Fields

被引:11
作者
Longo, Roberto [1 ]
Morinelli, Vincenzo [1 ]
Preta, Francesco [2 ]
Rehren, Karl-Henning [3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[2] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[3] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany
来源
ANNALES HENRI POINCARE | 2019年 / 20卷 / 08期
关键词
MODULAR STRUCTURE; CONFORMAL COVARIANCE; LOCAL ALGEBRAS; DUALITY; STATES; REPRESENTATIONS; STANDARD; NETS; SPIN;
D O I
10.1007/s00023-019-00820-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the split property for any finite helicity free quantum fields. Finite helicity Poincare representations extend to the conformal group C (cf.Mack in Commun Math Phys 55:1-28, 1977) and the conformal covariance plays an essential role in the argument: The split property is ensured by the trace class condition Trfor the conformal Hamiltonian L0 of the Mobius covariant restriction of the net on the time axis. We extend the argument for the scalar case presented in Buchholz et al. (Commun Math Phys 270:267-293, 2007). We provide the direct sum decomposition into irreducible representations of the conformal extension of any helicity-h representation to the subgroup of transformations fixing the time axis. Our analysis provides new relations among finite helicity representations and suggests a new construction for representations and free quantum fields with nonzero helicity.
引用
收藏
页码:2555 / 2584
页数:30
相关论文
共 36 条
[11]   NUCLEAR MAPS AND MODULAR STRUCTURES .1. GENERAL-PROPERTIES [J].
BUCHHOLZ, D ;
DANTONI, C ;
LONGO, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (02) :233-250
[12]   PRODUCT STATES FOR LOCAL ALGEBRAS [J].
BUCHHOLZ, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 36 (04) :287-304
[13]   Nuclearity and thermal states in conformal field theory [J].
Buchholz, Detlev ;
D'Antoni, Claudio ;
Longo, Roberto .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (01) :267-293
[14]   STANDARD AND SPLIT INCLUSIONS OF VONNEUMANN-ALGEBRAS [J].
DOPLICHER, S ;
LONGO, R .
INVENTIONES MATHEMATICAE, 1984, 75 (03) :493-536
[15]   LOCAL ASPECTS OF SUPERSELECTION RULES .2. [J].
DOPLICHER, S ;
LONGO, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (03) :399-409
[16]  
Folland G. B., 2016, Textbooks in Mathematics
[17]   AN ALGEBRAIC SPIN AND STATISTICS THEOREM [J].
GUIDO, D ;
LONGO, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (03) :517-533
[18]   Extensions of conformal nets and superselection structures [J].
Guido, D ;
Longo, R ;
Wiesbrock, HW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 192 (01) :217-244
[19]  
Harlow D., 2018, ARXIV181005338
[20]   MODULAR STRUCTURE OF THE LOCAL ALGEBRAS ASSOCIATED WITH THE FREE MASSLESS SCALAR FIELD-THEORY [J].
HISLOP, PD ;
LONGO, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 84 (01) :71-85