Adaptive regularisation for ensemble Kalman inversion

被引:32
作者
Iglesias, Marco [1 ]
Yang, Yuchen [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
ensemble Kalman inversion; parameter identification; derivative-free inversions; MONTE-CARLO METHODS; DATA ASSIMILATION; DATA-DRIVEN; FILTER; CONVERGENCE; ALGORITHM; SCHEME;
D O I
10.1088/1361-6420/abd29b
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new regularisation strategy for the classical ensemble Kalman inversion (EKI) framework. The strategy consists of: (i) an adaptive choice for the regularisation parameter in the update formula in EKI, and (ii) criteria for the early stopping of the scheme. In contrast to existing approaches, our parameter choice does not rely on additional tuning parameters which often have severe effects on the efficiency of EKI. We motivate our approach using the interpretation of EKI as a Gaussian approximation in the Bayesian tempering setting for inverse problems. We show that our parameter choice controls the symmetrised Kullback-Leibler divergence between consecutive tempering measures. We further motivate our choice using a heuristic statistical discrepancy principle. We test our framework using electrical impedance tomography with the complete electrode model. Parameterisations of the unknown conductivity are employed which enable us to characterise both smooth or a discontinuous (piecewise-constant) fields. We show numerically that the proposed regularisation of EKI can produce efficient, robust and accurate estimates, even for the discontinuous case which tends to require larger ensembles and more iterations to converge. We compare the proposed technique with a standard method of choice and demonstrate that the proposed method is a viable choice to address computational efficiency of EKI in practical/operational settings.
引用
收藏
页数:40
相关论文
共 55 条
  • [1] Uses and abuses of EIDORS: an extensible software base for EIT
    Adler, A
    Lionheart, WRB
    [J]. PHYSIOLOGICAL MEASUREMENT, 2006, 27 (05) : S25 - S42
  • [2] DATA DRIVEN RECOVERY OF LOCAL VOLATILITY SURFACES
    Albani, Vinicius
    Ascher, Uri M.
    Yang, Xu
    Zubelli, Jorge P.
    [J]. INVERSE PROBLEMS AND IMAGING, 2017, 11 (05) : 799 - 823
  • [3] [Anonymous], 2017, BAYESIAN APPROACH IN, DOI DOI 10.1007/978-3-319-12385-1_7
  • [4] [Anonymous], 1996, REGULARIZATION INVER
  • [5] Tuning tempered transitions
    Behrens, Gundula
    Friel, Nial
    Hurn, Merrilee
    [J]. STATISTICS AND COMPUTING, 2012, 22 (01) : 65 - 78
  • [6] Sequential Monte Carlo methods for Bayesian elliptic inverse problems
    Beskos, Alexandros
    Jasra, Ajay
    Muzaffer, Ege A.
    Stuart, Andrew M.
    [J]. STATISTICS AND COMPUTING, 2015, 25 (04) : 727 - 737
  • [7] Well posedness and convergence analysis of the ensemble Kalman inversion
    Bloemker, Dirk
    Schillings, Claudia
    Wacker, Philipp
    Weissmann, Simon
    [J]. INVERSE PROBLEMS, 2019, 35 (08)
  • [8] A STRONGLY CONVERGENT NUMERICAL SCHEME FROM ENSEMBLE KALMAN INVERSION
    Bloemker, Dirk
    Schillings, Claudia
    Wacker, Philipp
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (04) : 2537 - 2562
  • [9] Electrical impedance tomography
    Borcea, L
    [J]. INVERSE PROBLEMS, 2002, 18 (06) : R99 - R136
  • [10] A Bayesian filtering approach to layer stripping for electrical impedance tomography
    Calvetti, D.
    Nakkireddy, S.
    Somersalo, E.
    [J]. INVERSE PROBLEMS, 2020, 36 (05)